import numpy as np import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Conv1D, LSTM, Bidirectional, Dense, Attention # 生成随机输入数据 input_data = np.random.rand(8765, 10, 1) # 生成随机输出数据 output_data = np.random.rand(8765, 6) # 定义模型输入 input_shape = (10, 1) input_layer = Input(shape=input_shape) # CNN层 cnn_layer = Conv1D(filters=32, kernel_size=3, activation='relu')(input_layer) # BiLSTM层 bilstm_layer = Bidirectional(LSTM(units=64, return_sequences=True))(cnn_layer) # Attention层 attention_layer = Attention()(bilstm_layer) # 输出层 output_layer = Dense(units=6)(attention_layer) # 构建模型 model = Model(inputs=input_layer, outputs=output_layer) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 model.fit(input_data, output_data, batch_size=32, epochs=10, validation_split=0.2) # 使用模型进行预测 test_input = np.random.rand(1, 10, 1) prediction = model.predict(test_input) print("预测结果:", prediction)改成Python的代码
时间: 2024-04-10 19:32:53 浏览: 174
这段代码已经是Python代码了,如果你想在Python环境中运行它,只需将代码复制粘贴到Python解释器中即可。
确保你已经安装了所需的依赖库(例如NumPy和TensorFlow),并且已经正确设置了Python环境。
将代码复制到Python解释器中后,你可以直接运行它。它会生成随机的输入数据和输出数据,并使用CNN-BiLSTM-Attention模型进行训练和预测。
请确保在运行代码之前,你已经安装了所需的库,并且已经导入它们。如果你遇到任何错误,请检查你的环境配置和依赖库安装。
相关问题
import matplotlib.pyplot as plt import pandas as pd from keras.models import Sequential from keras import layers from keras import regularizers import os import keras import keras.backend as K import numpy as np from keras.callbacks import LearningRateScheduler data = "data.csv" df = pd.read_csv(data, header=0, index_col=0) df1 = df.drop(["y"], axis=1) lbls = df["y"].values - 1 wave = np.zeros((11500, 178)) z = 0 for index, row in df1.iterrows(): wave[z, :] = row z+=1 mean = wave.mean(axis=0) wave -= mean std = wave.std(axis=0) wave /= std def one_hot(y): lbl = np.zeros(5) lbl[y] = 1 return lbl target = [] for value in lbls: target.append(one_hot(value)) target = np.array(target) wave = np.expand_dims(wave, axis=-1) model = Sequential() model.add(layers.Conv1D(64, 15, strides=2, input_shape=(178, 1), use_bias=False)) model.add(layers.ReLU()) model.add(layers.Conv1D(64, 3)) model.add(layers.Conv1D(64, 3, strides=2)) model.add(layers.BatchNormalization()) model.add(layers.Dropout(0.5)) model.add(layers.Conv1D(64, 3)) model.add(layers.Conv1D(64, 3, strides=2)) model.add(layers.BatchNormalization()) model.add(layers.LSTM(64, dropout=0.5, return_sequences=True)) model.add(layers.LSTM(64, dropout=0.5, return_sequences=True)) model.add(layers.LSTM(32)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(5, activation="softmax")) model.summary() save_path = './keras_model3.h5' if os.path.isfile(save_path): model.load_weights(save_path) print('reloaded.') adam = keras.optimizers.adam() model.compile(optimizer=adam, loss="categorical_crossentropy", metrics=["acc"]) # 计算学习率 def lr_scheduler(epoch): # 每隔100个epoch,学习率减小为原来的0.5 if epoch % 100 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.5) print("lr changed to {}".format(lr * 0.5)) return K.get_value(model.optimizer.lr) lrate = LearningRateScheduler(lr_scheduler) history = model.fit(wave, target, epochs=400, batch_size=128, validation_split=0.2, verbose=2, callbacks=[lrate]) model.save_weights(save_path) print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
这段代码是用来训练一个深度学习模型的代码,使用了Keras和Tensorflow进行模型的搭建、训练和保存。该模型包含了卷积层、批量归一化层、Dropout层、LSTM层和全连接层,并且最终使用softmax激活函数得到预测的类别。通过对数据进行处理,将输入数据按照一定的规范进行规范化,将标签转换成了一个one-hot编码的形式。最后,该代码通过在数据上进行训练,得到一个可以用来做预测的深度学习模型。
请修改如下代码: def LSTNetAttention(trainX1, trainX2, trainY, config): # 定义输入层 input_data1 = Input(shape=(trainX1.shape[1], trainX1.shape[2])) input_data2 = Input(shape=(trainX2.shape[1], trainX2.shape[2])) # 定义 LSTM 模型 ... # 使用 GARCH 模型预测波动率 am = arch.arch_model(trainY, vol='GARCH', p=1, q=1) res = am.fit() volatility = res.forecast(horizon=1).variance.iloc[-1].values # 将预测结果和波动率相乘,得到最终的预测结果 pred = model.predict([trainX1, trainX2]) pred = pred * np.sqrt(volatility) # 将预测结果作为一个新的特征加入到模型中 new_feature = pred.reshape(-1, 1) # 重塑成 (batch_size, 1) 的形状 concat = concatenate([lstm_out1, lstm_out2, new_feature]) res = Activation('sigmoid')(concat) # 定义模型并返回 model = Model(inputs=[input_data1, input_data2], outputs=res) return model
好的,根据您提供的代码,您可以按照以下方式修改,以定义一个包含注意力机制的LSTNet模型:
```python
from tensorflow.keras.layers import Input, LSTM, Conv1D, Dense, Dropout, concatenate, Activation, Multiply, Lambda
from tensorflow.keras.models import Model
import numpy as np
import arch
def LSTNetAttention(trainX1, trainX2, trainY, config):
# 定义输入层
input_data1 = Input(shape=(trainX1.shape[1], trainX1.shape[2]))
input_data2 = Input(shape=(trainX2.shape[1], trainX2.shape[2]))
# 定义 LSTM 模型
lstm_out1 = LSTM(units=config['lstm_units'], return_sequences=True)(input_data1)
lstm_out2 = LSTM(units=config['lstm_units'], return_sequences=True)(input_data2)
# 定义卷积层和残差网络
conv_out1 = Conv1D(filters=config['conv_filters'], kernel_size=config['conv_kernel_size'], activation='relu')(lstm_out1)
conv_out2 = Conv1D(filters=config['conv_filters'], kernel_size=config['conv_kernel_size'], activation='relu')(lstm_out2)
dropout_out1 = Dropout(config['dropout_rate'])(conv_out1)
dropout_out2 = Dropout(config['dropout_rate'])(conv_out2)
dense_out1 = Dense(units=config['dense_units'], activation='relu')(dropout_out1)
dense_out2 = Dense(units=config['dense_units'], activation='relu')(dropout_out2)
res_out1 = concatenate([conv_out1, dense_out1])
res_out2 = concatenate([conv_out2, dense_out2])
res_out1 = Dropout(config['dropout_rate'])(res_out1)
res_out2 = Dropout(config['dropout_rate'])(res_out2)
res_out1 = Activation('relu')(res_out1)
res_out2 = Activation('relu')(res_out2)
# 定义注意力机制
attention = Dense(units=1, activation='tanh')(res_out2)
attention = Lambda(lambda x: np.exp(x) / np.sum(np.exp(x), axis=1, keepdims=True))(attention)
attention = Multiply()([res_out1, attention])
attention = Lambda(lambda x: np.sum(x, axis=1))(attention)
# 使用 GARCH 模型预测波动率
am = arch.arch_model(trainY, vol='GARCH', p=1, q=1)
res = am.fit()
volatility = res.forecast(horizon=1).variance.iloc[-1].values
# 将预测结果和波动率相乘,得到最终的预测结果
pred = attention
pred = pred * np.sqrt(volatility)
# 将预测结果作为一个新的特征加入到模型中
new_feature = pred.reshape(-1, 1) # 重塑成 (batch_size, 1) 的形状
concat = concatenate([res_out1, new_feature])
res = Activation('sigmoid')(concat)
# 定义模型并返回
model = Model(inputs=[input_data1, input_data2], outputs=res)
return model
```
在这个例子中,我们首先定义了输入层,然后定义了一个包含两个LSTM层的LSTNet模型。接着我们定义了卷积层和残差网络,用于提取和增强特征。然后我们使用注意力机制,根据第二个LSTM层的输出计算注意力权重,并将注意力权重应用到第一个LSTM层的输出上,得到加权后的注意力向量。接着我们使用GARCH模型预测波动率,并将预测结果和注意力向量相乘,得到最终的预测结果。最后我们将预测结果作为一个新的特征加入到模型中,并使用sigmoid函数进行二分类预测。
阅读全文