CNN做时间序列预测_使用Keras实现CNN+BiLSTM+Attention的多维(多变量)时间序列预测
时间: 2023-07-15 20:15:30 浏览: 102
使用CNN+BiLSTM+Attention的多维时间序列预测是一种常见的方法,以下是使用Keras实现的代码示例:
首先,导入所需的库:
```python
import numpy as np
import pandas as pd
from keras.models import Model
from keras.layers import Input, Conv1D, MaxPooling1D, Flatten, Dense, Dropout, LSTM, Bidirectional, Permute, TimeDistributed, multiply, concatenate, Reshape
from keras.utils.vis_utils import plot_model
from sklearn.preprocessing import MinMaxScaler
```
然后,加载数据集并对其进行预处理:
```python
# 加载数据集
df = pd.read_csv('data.csv', index_col=0)
dataset = df.values
# 将数据集归一化
scaler = MinMaxScaler(feature_range=(0, 1))
dataset_scaled = scaler.fit_transform(dataset)
# 将数据集转换为3D张量
def create_dataset(dataset, look_back):
dataX, dataY = [], []
for i in range(len(dataset) - look_back):
a = dataset[i:(i + look_back), :]
dataX.append(a)
dataY.append(dataset[i + look_back, :])
return np.array(dataX), np.array(dataY)
look_back = 12
train_size = int(len(dataset_scaled) * 0.67)
test_size = len(dataset_scaled) - train_size
train, test = dataset_scaled[0:train_size, :], dataset_scaled[train_size:len(dataset_scaled), :]
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
```
接下来,定义CNN-BiLSTM-Attention模型:
```python
def attention_block(inputs, time_steps):
a = Permute((2, 1))(inputs)
a = TimeDistributed(Dense(time_steps, activation='softmax'))(a)
a = Lambda(lambda x: K.mean(x, axis=1), name='dim_reduction')(a)
a = RepeatVector(128)(a)
a_probs = Permute((2, 1), name='attention_vec')(a)
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
return output_attention_mul
def create_model(trainX):
inputs = Input(shape=(trainX.shape[1], trainX.shape[2]))
conv1 = Conv1D(filters=64, kernel_size=3, activation='relu')(inputs)
pool1 = MaxPooling1D(pool_size=2)(conv1)
bilstm1 = Bidirectional(LSTM(units=64, activation='relu', return_sequences=True))(pool1)
attention1 = attention_block(bilstm1, trainX.shape[1])
flatten = Flatten()(attention1)
dense1 = Dense(units=32, activation='relu')(flatten)
dropout1 = Dropout(0.2)(dense1)
dense2 = Dense(units=trainY.shape[1], activation='linear')(dropout1)
model = Model(inputs=inputs, outputs=dense2)
return model
model = create_model(trainX)
plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True)
```
最后,训练和评估模型:
```python
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=64)
trainScore = model.evaluate(trainX, trainY, verbose=0)
print('Train Score: %.2f MSE (%.2f RMSE)' % (trainScore, math.sqrt(trainScore)))
testScore = model.evaluate(testX, testY, verbose=0)
print('Test Score: %.2f MSE (%.2f RMSE)' % (testScore, math.sqrt(testScore)))
```
这样就可以使用CNN-BiLSTM-Attention模型预测多维时间序列数据了。