"""构建模型""" model = tf.keras.Sequential() model.add(tf.keras.layers.Embedding(max_word, 50, input_length=maxlen)) model.add(tf.keras.layers.LSTM(64))#64是隐藏单元个数 model.add(tf.keras.layers.Dense(1, activation='sigmoid')) model.summary() model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc']) """训练模型""" print('总样本数量:%d' % (len(data))) print('训练集数量:%d' % (len(data_ok))) history = model.fit(data_ok, data.yn, epochs=15, batch_size=128, validation_split=0.2 ) x_train, x_test, y_train, y_test = train_test_split(data_ok,data.yn, random_state=1) print('测试集数量:%d' % (len(x_train))) loss, acc = model.evaluate(x_test, y_test)

时间: 2024-04-18 16:31:26 浏览: 135
PDF

使用K.function()调试keras操作

这段代码是用来构建和训练一个基于LSTM的情感分析模型。首先,通过`tf.keras.Sequential()`创建一个顺序模型。然后,模型使用嵌入层将输入的文本数据转换为固定长度的向量表示。接下来,使用LSTM层来学习输入序列的特征。最后,通过全连接层输出一个二分类的概率结果。 模型的结构可以通过`model.summary()`打印出来,这个方法会显示每一层的输出形状和参数数量。 在训练模型之前,首先输出总样本数量和训练集数量。然后,使用`model.fit()`方法进行模型训练,传入训练数据和标签,指定训练的轮数、批次大小和验证集比例。接下来,使用`train_test_split()`方法将训练数据划分为训练集和测试集,并输出测试集数量。 最后,使用`model.evaluate()`方法评估模型在测试集上的损失和准确率。
阅读全文

相关推荐

import jieba import pynlpir import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split # 读取文本文件 with open('1.txt', 'r', encoding='utf-8') as f: text = f.read() # 对文本进行分词 word_list = list(jieba.cut(text, cut_all=False)) # 打开pynlpir分词器 pynlpir.open() # 对分词后的词语进行词性标注 pos_list = pynlpir.segment(text, pos_tagging=True) # 将词汇表映射成整数编号 vocab = set(word_list) vocab_size = len(vocab) word_to_int = {word: i for i, word in enumerate(vocab)} int_to_word = {i: word for i, word in enumerate(vocab)} # 将词语和词性标记映射成整数编号 pos_tags = set(pos for word, pos in pos_list) num_tags = len(pos_tags) tag_to_int = {tag: i for i, tag in enumerate(pos_tags)} int_to_tag = {i: tag for i, tag in enumerate(pos_tags)} # 将文本和标签转换成整数序列 X = np.array([word_to_int[word] for word in word_list]) y = np.array([tag_to_int[pos] for word, pos in pos_list]) # 将数据划分成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 定义模型参数 embedding_size = 128 rnn_size = 256 batch_size = 128 epochs = 10 # 定义RNN模型 model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, embedding_size), tf.keras.layers.SimpleRNN(rnn_size), tf.keras.layers.Dense(num_tags, activation='softmax') ]) # 编译模型 model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(X_test, y_test)) # 对测试集进行预测 y_pred = model.predict(X_test) y_pred = np.argmax(y_pred, axis=1) # 计算模型准确率 accuracy = np.mean(y_pred == y_test) print('Accuracy: {:.2f}%'.format(accuracy * 100)) # 将模型保存到文件中 model.save('model.h5')出现下述问题:ValueError: Found input variables with inconsistent numbers of samples:

详细分析下述代码:import jieba import pynlpir import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split # 读取文本文件with open('1.txt', 'r', encoding='utf-8') as f: text = f.read()# 对文本进行分词word_list = list(jieba.cut(text, cut_all=False))# 打开pynlpir分词器pynlpir.open()# 对分词后的词语进行词性标注pos_list = pynlpir.segment(text, pos_tagging=True)# 将词汇表映射成整数编号vocab = set(word_list)vocab_size = len(vocab)word_to_int = {word: i for i, word in enumerate(vocab)}int_to_word = {i: word for i, word in enumerate(vocab)}# 将词语和词性标记映射成整数编号pos_tags = set(pos for word, pos in pos_list)num_tags = len(pos_tags)tag_to_int = {tag: i for i, tag in enumerate(pos_tags)}int_to_tag = {i: tag for i, tag in enumerate(pos_tags)}# 将文本和标签转换成整数序列X = np.array([word_to_int[word] for word in word_list])y = np.array([tag_to_int[pos] for word, pos in pos_list])# 将数据划分成训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义模型参数embedding_size = 128rnn_size = 256batch_size = 128epochs = 10# 定义RNN模型model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, embedding_size), tf.keras.layers.SimpleRNN(rnn_size), tf.keras.layers.Dense(num_tags, activation='softmax')])# 编译模型model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(X_test, y_test))# 对测试集进行预测y_pred = model.predict(X_test)y_pred = np.argmax(y_pred, axis=1)# 计算模型准确率accuracy = np.mean(y_pred == y_test)print('Accuracy: {:.2f}%'.format(accuracy * 100))# 将模型保存到文件中model.save('model.h5')

检查以下代码:import numpy as np import tensorflow as tf # 读取数据 with open('data.txt', 'r', encoding='utf-8') as f: corpus = [line.strip() for line in f] sentences = [sentence.split() for sentence in corpus] # 构建词表和标记表 word_set = set([word for sentence in sentences for word in sentence]) tag_set = set([tag for sentence in sentences for _, tag in [tagged_word.split('/') for tagged_word in sentence]]) word_to_index = dict([(word, i+2) for i, word in enumerate(sorted(list(word_set)))]) tag_to_index = dict([(tag, i+1) for i, tag in enumerate(sorted(list(tag_set)))]) # 准备训练数据和标签 word_indices = [[word_to_index.get(word, 0) for word in sentence] for sentence in sentences] tag_indices = [[tag_to_index[tag] for _, tag in [tagged_word.split('/') for tagged_word in sentence]] for sentence in sentences] num_timesteps = max(len(x) for x in word_indices) num_samples = len(word_indices) word_indices_array = np.zeros((num_samples, num_timesteps), dtype=np.int32) for i, x in enumerate(word_indices): for j, val in enumerate(x): word_indices_array[i, j] = val # 构建模型 model = tf.keras.models.Sequential([ tf.keras.layers.Input(shape=(num_timesteps,)), tf.keras.layers.Embedding(input_dim=len(word_to_index)+2, output_dim=32, mask_zero=True), tf.keras.layers.SimpleRNN(128, return_sequences=True), tf.keras.layers.Dense(len(tag_to_index)+1, activation=tf.nn.softmax) ]) # 编译模型 model.compile(loss='sparse_categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) # 训练模型 model.fit(word_indices_array, np.array(tag_indices), epochs=10, batch_size=64) # 保存模型 model.save('rnn_model.h5') # 保存词汇表和标记表 with open('word_set.txt', 'w', encoding='utf-8') as f: f.write('\n'.join(word_set)) with open('tag_set.txt', 'w', encoding='utf-8') as f: f.write('\n'.join(tag_set))

import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras import numpy as np #加载IMDB数据 imdb = keras.datasets.imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=100) print("训练记录数量:{},标签数量:{}".format(len(train_data),len(train_labels))) print(train_data[0]) #数据标准化 train_data = keras.preprocessing.sequence.pad_sequences(train_data,value=0,padding='post',maxlen=256) text_data = keras.preprocessing.sequence.pad_sequences(train_data,value=0,padding='post',maxlen=256) print(train_data[0]) #构建模型 vocab_size = 10000 model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, 64), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)), tf.keras.layers.Dense(64,activation='relu'), tf.keras.layers.Dense(1) ]) model.summary() #配置并训练模型 model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy']) x_val = train_data[:10000] partial_x_train = train_data[10000:] y_val = train_labels[:10000] partial_y_train = train_labels[10000:] history = model.fit(partial_x_train,partial_y_train,epochs=1,batch_size=512,validation_data=(x_val,y_val),verbose=1) #测试性能 results = model.evaluate(test_data, test_labels, verbose=2) print(results) #训练过程可视化 history_dict = history.history print(history_dict.keys()) def plot_graphs(history, string): plt.plot(history.history[string]) plt.plot(history.history['val_'+string]) plt.xlabel("Epochs") plt.ylabel(string) plt.legend([string,'val_'+string]) plt.show() plot_graphs(history,"accuracy") plot_graphs(history,"loss")

最新推荐

recommend-type

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页
recommend-type

PyMySQL-1.1.0rc1.tar.gz

PyMySQL-1.1.0rc1.tar.gz
recommend-type

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip
recommend-type

docker构建php开发环境

docker构建php开发环境
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依