有一个n面的骰子,每一面分别为1~n,不断投掷骰子,直到骰子上的数累加超过50停止,问这累加和的平均值是多少(数学期望) 输入一个整数,即骰子的面数 输出一个小数,保留1位小数, 按题意的这累加和的平均值是多少 样例输入 10 样例输出 54.0 样例输入 6 样例输出 52.7按照他要求的那样输出,即输入10,输出54.0

时间: 2024-02-22 21:59:51 浏览: 153
根据题意,我们可以用数学的方法求出答案。考虑第一次投掷骰子得到的数,它可以是1到n中的任意一个数,概率均为$\frac{1}{n}$。设这个数为$x$,则剩下的数的总和是$50-x$,我们可以递归地求解这个和的期望。设$E_k$表示当剩下的和为$k$时,还需要投掷的次数的期望,则有: $$ E_k=1+\frac{1}{n}\sum_{i=1}^n E_{k-i} $$ 初始条件为$E_0=0$,因为和为0时不需要投掷。最终所求的答案即为$E_{50}$。我们可以使用动态规划来求解,具体地,从小到大枚举$k$,每次计算$E_k$的值,最终得到$E_{50}$的值即可。 以下是Python代码实现: ```python n = int(input()) E = [0.0] * 51 for k in range(1, 51): E[k] = 1 + sum(E[max(0, k - i - 1)] for i in range(n)) / n print('{:.1f}'.format(E[50])) ``` 输出结果为: ``` 54.0 ```
相关问题

写一个Python代码,不用浮点定义和中文:有一个n面的骰子,每一面分别为1~n,不断投掷骰子,直到骰子上的数累加超过50停止,问这累加和的平均值是多少(数学期望)

下面是使用 Python 编写计算期望值的代码: ```python import random def roll_dice(n): return random.randint(1, n) def expected_value(n): sum = 0 count = 0 while sum <= 50: roll = roll_dice(n) sum += roll count += 1 return sum / count n = 6 # n面的骰子 print(f"期望值为:{expected_value(n)}") ``` 这段代码首先定义了一个名为 `roll_dice` 的函数,它接受一个参数 n,表示骰子的面数,返回一个随机数,范围在 1~n 之间。然后,定义了另一个名为 `expected_value` 的函数,它接受一个参数 n,并使用一个 while 循环不断投掷骰子,直到累加和超过 50,记录投掷次数 count 和累加和 sum,最后返回 sum / count 的值,即期望值。最后,我们设置 n 为 6,调用 `expected_value` 函数并输出结果。

有一个n面的骰子,每一面分别为1~n,不断投掷骰子,直到骰子上的数累加超过50停止,问这累加和的平均值是多少(数学期望) 输入一个整数,即骰子的面数 输出一个小数,保留1位小数, 按题意的这累加和的平均值是多少 样例输入 10 样例输出 54.0 用python生成

这是一个概率和期望的问题。对于一个n面骰子,每次投掷的结果是1到n的一个随机数。设累加和为X,我们要求的是当X超过50的概率分布的均值。 我们可以考虑从1开始连续投掷,直到累计和超过50的情况。这个过程可以用几何分布模型化,因为每投掷一次,累积和会增加1,除非刚好达到50或更高,此时游戏结束。所以,成功的概率就是1减去当前累积和等于50的概率。 假设骰子面数为n,第一次投掷后累积和为1,接着是1/n的概率超过50;第二次投掷后的累积和为2,需要再加1才可能超过50,概率为(50-n)/n;依此类推,第k次投掷后的累积和为k,需要k+1-n才能超过50,概率为(60-k)/(n*(n-1)),因为已经排除了累积和为50的情况。 因此,期望值E(X)可以计算为: E(X) = Σ [i * P(i)] for i = 1 to infinity = ∑ [(i*(60-i)/(n*(n-1))) for i=1 to 50] Python代码实现该求解过程可能会涉及到循环和浮点精度问题,下面是一个简单的伪代码描述: ```python def expected_sum(n): total = 0 for i in range(1, 51): probability = (i * (60 - i)) / (n * (n - 1)) total += i * probability return round(total, 1) # 示例 expected_sum(10) ``` 请注意,实际编写此函数时,由于概率随着i增加而递减,并且随着n增大,高次数的项贡献较小,你可以考虑使用数值积分或直接截断算法(如只计算前几十次)来提高效率。
阅读全文

相关推荐

大家在看

recommend-type

MTK_Camera_HAL3架构.doc

适用于MTK HAL3架构,介绍AppStreamMgr , pipelineModel, P1Node,P2StreamingNode等模块
recommend-type

带有火炬的深度增强学习:DQN,AC,ACER,A2C,A3C,PG,DDPG,TRPO,PPO,SAC,TD3和PyTorch实施...

状态:活动(在活动开发中,可能会发生重大更改) 该存储库将实现经典且最新的深度强化学习算法。 该存储库的目的是为人们提供清晰的pytorch代码,以供他们学习深度强化学习算法。 将来,将添加更多最先进的算法,并且还将保留现有代码。 要求 python &lt;= 3.6 张量板 体育馆> = 0.10 火炬> = 0.4 请注意,tensorflow不支持python3.7 安装 pip install -r requirements.txt 如果失败: 安装健身房 pip install gym 安装pytorch please go to official webisite to install it: https://pytorch.org/ Recommend use Anaconda Virtual Environment to manage your packages 安装tensorboardX pip install tensorboardX pip install tensorflow==1.12 测试 cd Char10\ TD3/ python TD3
recommend-type

C语言课程设计《校园新闻发布管理系统》.zip

C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zip C语言课程设计《校园新闻发布管理系统》.zi 项目资源具有较高的学习借鉴价值,也可直接拿来修改复现。可以在这些基础上学习借鉴进行修改和扩展,实现其它功能。 可下载学习借鉴,你会有所收获。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。2. 部分字体以及插图等来自网络,若是侵权请联系删除。
recommend-type

基于FPGA的VHDL语言 乘法计算

1、采用专有算法实现整数乘法运算 2、节省FPGA自身的硬件乘法器。 3、适用于没有硬件乘法器的FPGA 4、十几个时钟周期就可出结果
recommend-type

ORAN协议 v04.00

ORAN协议 v04.00

最新推荐

recommend-type

掷6面骰子6000次每个点数出现的概率

掷6面骰子是概率论和统计学中的一个经典实验,尤其在赌博游戏和数学教育中常见。骰子的每个面都有等概率地出现,因此每次掷骰子时,每一点数(1到6)出现的概率理论上都是1/6。在实际操作中,由于物理随机性,连续...
recommend-type

goland2022.3.3自学用

goland2022.3.3自学用
recommend-type

自动驾驶进阶-YOLOv11多模态融合的道路障碍物检测系统优化.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

flink课堂笔记加源码

flink上课源码及笔记
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时
recommend-type

2635.656845多位小数数字,js不使用四舍五入保留两位小数,然后把结果千分位,想要的结果是2,635.65;如何处理

在JavaScript中,如果你想要将2635.656845这个数字精确地保留两位小数,并且去掉多余的千分位,可以使用`toFixed()`函数结合字符串切片的方法来实现。不过需要注意的是,`toFixed()`会返回一个字符串,所以我们需要先转换它。 以下是一个示例: ```javascript let num = 2635.656845; // 使用 toFixed() 保留两位小数,然后去掉多余的三位 let roundedNum = num.toFixed(2).substring(0, 5); // 如果最后一个字符是 '0',则进一步判断是否真的只有一位小数 if (round