使用python实现多目标粒子群算法的例子
时间: 2024-06-24 22:00:55 浏览: 168
粒子群优化(Particle Swarm Optimization, PSO)是一种模拟鸟群觅食行为的搜索算法,用于解决多目标优化问题。在Python中,我们可以使用`deap`库来实现一个简单的多目标PSO算法。以下是一个基本的示例:
```python
# 导入所需库
from deap import base, creator, tools
import numpy as np
# 创建问题定义(这里假设我们有两个目标)
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0)) # 使用负权重表示最小化两个目标
creator.create("Individual", list, fitness=creator.FitnessMulti)
def evaluate(individual):
# 假设这是你的目标函数,返回一个FitnessMulti实例
# 这里仅作为例子,你需要根据实际问题替换
return individual, # 返回个体和对应的目标值
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, -100, 100)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=2) # 初始化粒子
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
def distance(ind1, ind2):
# 计算两个个体的距离,这取决于你的目标空间
return np.linalg.norm([ind1.fitness.values - ind2.fitness.values, ind1.fitness.values - ind2.fitness.values])
def update_velocity(population, best_per_gen, g_best):
# 更新粒子的速度和位置
for particle in population:
r1, r2 = np.random.rand(2)
velocity = [r1 * (best_per_gen[i].fitness.values[j] - particle.fitness.values[j]) + r2 * (g_best.fitness.values[j] - particle.fitness.values[j])
for j in range(len(particle.fitness.values))]
particle.position += velocity
toolbox.register("evaluate", evaluate)
toolbox.register("update_velocity", update_velocity)
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.5)
toolbox.register("map", map, toolbox.evaluate)
def multi_obj_pso(n_particles, max_iter, pop_size):
population = toolbox.population(n=pop_size)
best_per_gen = tools.selBest(population, k=n_particles)
g_best = tools.selBest(population, k=1)
for _ in range(max_iter):
offspring = toolbox.map(toolbox.evaluate, population)
offspring.extend(population)
for child1, child2 in zip(offspring[:pop_size], offspring[pop_size:]):
if np.random.rand() < 0.5:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring[pop_size:]:
toolbox.mutate(mutant)
del mutant.fitness.values
population[:] = toolbox.select(offspring, k=pop_size)
update_velocity(population, best_per_gen, g_best)
return best_per_gen, g_best
# 运行算法
n_particles = 50
max_iter = 100
pop_size = 100
best_individuals, global_best = multi_obj_pso(n_particles, max_iter, pop_size)
```
这个例子中,我们首先定义了一个多目标问题的适应度函数,并使用DEAP库中的工具来构建一个完整的PSO框架,包括选择、交叉、变异以及速度和位置的更新。最后,算法会在给定的迭代次数后返回一组最优解。
阅读全文