np.array(normalization_data)
时间: 2024-05-26 08:07:49 浏览: 152
`np.array(normalization_data)`是将`normalization_data`转换为NumPy数组的操作。NumPy是Python中用于科学计算和数据处理的一个重要库,它提供了多维数组对象和各种用于数组操作的函数和方法。
在这里,`normalization_data`可能是一个列表、元组或其他序列类型,通过使用NumPy库中的array()函数,我们可以将其转换为一个NumPy数组。这样做可以使得我们更加方便地进行各种数据处理和计算操作。
需要注意的是,`normalization_data`中的数据需要符合一定的规范,才能被成功转换为NumPy数组。例如,如果`normalization_data`中的元素数量不一致,或者元素类型不同,就可能会导致转换失败。
相关问题
X_test = [] Y_test = [] for filename in glob.glob(TEST_DATA_DIR + "*.png"): X_test.append(np.array(Image.open(filename))) Y_test.append(filename.lstrip(TEST_DATA_DIR).rstrip("*.png")) # list->numpy(rgb)->gray->normalization->fit keras X_test = np.array(X_test,dtype=np.float32) X_test = rgb2gray(X_test) X_test = X_test / 255 X_test,_ = fit_keras_channels(X_test) Y_test = list(Y_test) for i in range(len(Y_test)): Y_test[i] = text2vec(Y_test[i]) Y_test = np.asarray(Y_test) print(X_test.shape,type(X_test)) print(Y_test.shape,type(Y_test))
这段代码看起来是一个测试数据集的预处理过程。它首先使用glob库来读取一个文件夹中所有以.png结尾的文件,然后将每个文件读取为numpy数组,并将它们添加到X_test列表中。同时,文件名也被添加到Y_test列表中,并且经过一些处理(lstrip和rstrip),只保留了文件名中间的文本部分。接下来,X_test数组被转换为灰度图像,并进行了归一化处理。最后,Y_test列表中的每个文本标签也被转换为向量形式,并转换为numpy数组。最后打印出X_test和Y_test的形状和类型。
arr0 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr3 = np.array(input("请输入连续24个月的配件销售数据,元素之间用空格隔开:").split(), dtype=float) data_array = np.vstack((arr1, arr3)) data_matrix = data_array.T data = pd.DataFrame(data_matrix, columns=['month', 'sales']) sales = data['sales'].values.astype(np.float32) sales_mean = sales.mean() sales_std = sales.std() sales = abs(sales - sales_mean) / sales_std train_data = sales[:-1] test_data = sales[-12:] def create_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(11, 1))) model.add(layers.Conv1D(filters=32, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=64, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=128, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=256, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=512, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dense(1, activation='linear')) return model model = create_model() BATCH_SIZE = 16 BUFFER_SIZE = 100 train_dataset = tf.data.Dataset.from_tensor_slices(train_data) train_dataset = train_dataset.window(11, shift=1, drop_remainder=True) train_dataset = train_dataset.flat_map(lambda window: window.batch(11)) train_dataset = train_dataset.map(lambda window: (window[:-1], window[-1:])) train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(1) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') history = model.fit(train_dataset, epochs=100, verbose=0) test_input = test_data[:-1] test_input = np.reshape(test_input, (1, 11, 1)) predicted_sales = model.predict(test_input)[0][0] * sales_std + sales_mean test_prediction = model.predict(test_input) y_test=test_data[1:12] y_pred=test_prediction y_pred = test_prediction.ravel() print("预测下一个月的销量为:", predicted_sales),如何将以下代码稍作修改插入到上面的最后,def comput_acc(real,predict,level): num_error=0 for i in range(len(real)): if abs(real[i]-predict[i])/real[i]>level: num_error+=1 return 1-num_error/len(real) a=np.array(test_data[label]) real_y=a real_predict=test_predict print("置信水平:{},预测准确率:{}".format(0.2,round(comput_acc(real_y,real_predict,0.2)* 100,2)),"%")
你可以在最后添加如下代码实现 `comput_acc()` 函数的功能:
```
label = 0 # 定义标签
a = np.array(test_data[label]) # 获取测试数据的标签列
real_y = a[1:] # 实际销售数据
real_predict = y_pred[:-1] # 预测销售数据
print("置信水平:{},预测准确率:{}".format(0.2, round(comput_acc(real_y, real_predict, 0.2) * 100, 2)), "%")
```
这段代码的作用是,首先定义标签为 0,即选取测试数据中的第一列数据(即销售数据)。然后,使用 `np.array()` 函数将该列数据转换为 numpy 数组 `a`。接着,将 `a` 中的第二个元素到最后一个元素赋值给 `real_y`,这里是因为真实销售数据的第一个元素已经作为测试数据输入了模型,所以预测值中不包含该元素。然后,将 `y_pred` 中的第一个元素到倒数第二个元素赋值给 `real_predict`,这是因为预测值中的最后一个元素已经与真实值的最后一个元素相对应。最后,调用 `comput_acc()` 函数计算预测准确率,并将结果打印输出。
阅读全文