猫狗识别pytorch
时间: 2023-08-08 10:13:42 浏览: 147
您好!对于猫狗识别问题,您可以使用PyTorch构建一个深度学习模型来解决。下面是一个简单的示例代码,可以帮助您入门:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, models, transforms
# 定义数据预处理
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
# 加载数据集
data_dir = 'path_to_dataset'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
# 定义模型
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
model = model.to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 训练模型
def train_model(model, criterion, optimizer, num_epochs=25):
for epoch in range(num_epochs):
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
# 使用GPU训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = train_model(model, criterion, optimizer, num_epochs=25)
```
这个示例代码使用了预训练的ResNet-18模型,并使用了梯度下降优化器进行训练。您需要将`path_to_dataset`替换为您的数据集路径,并根据需要调整超参数和模型结构。
希望这可以帮助到您!如果还有其他问题,请随时提问。
阅读全文