注意力机制的数学原理
时间: 2023-11-20 18:55:20 浏览: 112
注意力机制是一种机器学习中常用的技术,它可以帮助模型更好地处理输入数据。其数学原理如下:
假设我们有一个查询向量Q和一组键值对(K, V),其中K是键向量的集合,V是值向量的集合。我们可以通过计算Q和K之间的相似度来计算注意力分数,然后将这些分数应用于值向量V以获得最终的输出。
具体来说,我们可以使用点积注意力或双线性注意力来计算注意力分数。点积注意力使用点积来计算Q和K之间的相似度,而双线性注意力使用矩阵乘法来计算相似度。然后,我们可以将注意力分数应用于值向量V,以获得最终的输出。
在多头注意力中,我们将Q,K和V分别投影到多个子空间中,并在每个子空间中执行注意力计算。然后,我们将每个子空间的输出连接起来,以获得最终的输出。
下面是一个使用点积注意力计算注意力分数的示例代码:
```python
import torch
# 定义查询向量Q、键向量K和值向量V
Q = torch.randn(1, 10, 128) # (batch_size, seq_len, hidden_size)
K = torch.randn(1, 20, 128) # (batch_size, seq_len, hidden_size)
V = torch.randn(1, 20, 128) # (batch_size, seq_len, hidden_size)
# 计算注意力分数
scores = torch.bmm(Q, K.transpose(1, 2)) # (batch_size, seq_len_q, seq_len_k)
# 对注意力分数进行缩放
scores = scores / torch.sqrt(torch.tensor(128.0))
# 计算注意力权重
weights = torch.softmax(scores, dim=-1)
# 应用注意力权重到值向量V上
outputs = torch.bmm(weights, V) # (batch_size, seq_len_q, hidden_size)
```
阅读全文