粒子群算法优化xgboost回归模型参数寻优代码
时间: 2023-06-22 14:25:57 浏览: 732
以下是使用粒子群算法(PSO)优化XGBoost回归模型参数的Python代码示例:
```python
import xgboost as xgb
import numpy as np
from pyswarm import pso
# 定义XGBoost模型训练函数
def train_xgb(params, X_train, y_train, X_val, y_val):
# 将参数转换为字典形式
params_dict = {
'max_depth': int(params[0]),
'learning_rate': params[1],
'n_estimators': int(params[2]),
'min_child_weight': int(params[3]),
'subsample': params[4],
'gamma': params[5],
'colsample_bytree': params[6],
'reg_alpha': params[7],
'reg_lambda': params[8],
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'seed': 42
}
# 创建DMatrix数据集
dtrain = xgb.DMatrix(X_train, label=y_train)
dval = xgb.DMatrix(X_val, label=y_val)
# 训练模型
model = xgb.train(params_dict, dtrain, evals=[(dval, 'validation')],
num_boost_round=1000, early_stopping_rounds=20, verbose_eval=False)
# 返回模型的RMSE评估指标
return model.best_score
# 定义目标函数,即最小化RMSE
def objective(params):
rmse = train_xgb(params, X_train, y_train, X_val, y_val)
return rmse
# 加载数据
X_train, X_val, y_train, y_val = load_data()
# 定义参数范围
bounds = [(1, 10), (0.01, 0.5), (10, 200), (1, 10), (0.1, 1.0), (0, 10.0),
(0.1, 1.0), (0, 10.0), (0, 10.0)]
# 使用PSO算法进行参数寻优
params, _ = pso(objective, bounds, swarmsize=50, omega=0.5, phip=0.5, phig=0.5, maxiter=100)
# 输出最优参数
print('最优参数:', params)
# 使用最优参数重新训练模型
best_params_dict = {
'max_depth': int(params[0]),
'learning_rate': params[1],
'n_estimators': int(params[2]),
'min_child_weight': int(params[3]),
'subsample': params[4],
'gamma': params[5],
'colsample_bytree': params[6],
'reg_alpha': params[7],
'reg_lambda': params[8],
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'seed': 42
}
dtrain = xgb.DMatrix(X_train, label=y_train)
model = xgb.train(best_params_dict, dtrain, evals=[(dtrain, 'train')],
num_boost_round=1000, early_stopping_rounds=20, verbose_eval=False)
# 对测试数据进行预测
X_test, y_test = load_test_data()
dtest = xgb.DMatrix(X_test)
y_pred = model.predict(dtest)
# 输出测试集RMSE评估指标
rmse = np.sqrt(np.mean(np.square(y_test - y_pred)))
print('测试集RMSE:', rmse)
```
在以上示例代码中,我们首先定义了一个XGBoost模型训练函数`train_xgb`,该函数使用给定的参数值训练XGBoost回归模型,并返回模型的RMSE评估指标。然后,我们定义了目标函数`objective`,即最小化RMSE。接着,我们加载数据,并定义了参数范围`bounds`。最后,我们使用PSO算法进行参数寻优,并输出最优参数和测试集RMSE评估指标。
阅读全文