svd奇异值分解 python
时间: 2023-07-06 09:33:24 浏览: 149
svd 奇异值分解
4星 · 用户满意度95%
在Python中,可以使用NumPy库中的linalg.svd()函数来进行SVD奇异值分解。以下是一个简单的例子:
```python
import numpy as np
# 创建一个矩阵
A = np.array([[1, 2], [3, 4], [5, 6]])
# 进行SVD分解
U, S, VT = np.linalg.svd(A)
# 打印结果
print("U:\n", U)
print("S:\n", S)
print("VT:\n", VT)
```
输出结果如下:
```
U:
[[-0.2298477 -0.88346102 0.40824829]
[-0.52474482 -0.24078249 -0.81649658]
[-0.81964194 0.40189603 0.40824829]]
S:
[9.52551809 0.51430058]
VT:
[[-0.61962948 -0.78489445]
[ 0.78489445 -0.61962948]]
```
其中,U是左奇异矩阵,S是奇异值向量,VT是右奇异矩阵。
阅读全文