pytorch nn.LSTM() 函数的输出
时间: 2024-01-07 22:00:35 浏览: 212
`nn.LSTM()`函数的输出有两个部分,分别是输出和隐藏状态。输出是指LSTM网络的最终输出,它可以用来预测下一个单词或者分类问题。隐藏状态是指LSTM网络在每个时间步骤时产生的隐藏状态,它可以被用来维护LSTM网络内部的状态信息。
具体地说,如果输入序列的长度为`seq_len`,每个输入单词的词向量维度为`input_size`,LSTM的隐含层中包含`hidden_size`个神经元,则`nn.LSTM()`函数的输出形状为`(seq_len, batch_size, hidden_size)`,其中`batch_size`是输入序列的批次大小。
需要注意的是,在LSTM网络中,输出和隐藏状态的形状是相同的,因此在一些实现中,这两个状态会被合并成一个张量输出,形状为`(seq_len, batch_size, hidden_size * num_directions)`,其中`num_directions`表示LSTM网络的方向数,通常为1或2。
相关问题
用pytorch实现双向LSTM类,要求不能使用nn.LSTM函数,输入和输出参数和nn.LSTM一致
好的,我可以为您编写一个双向LSTM类,输入和输出参数与nn.LSTM一致,但是不使用nn.LSTM函数。代码如下:
```python
import torch
import torch.nn as nn
class BiLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0, bidirectional=True):
super(BiLSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = dropout
self.bidirectional = bidirectional
# 前向LSTM
self.f_lstm = nn.ModuleList()
for i in range(num_layers):
if i == 0:
self.f_lstm.append(nn.LSTMCell(input_size=input_size, hidden_size=hidden_size))
else:
self.f_lstm.append(nn.LSTMCell(input_size=hidden_size, hidden_size=hidden_size))
# 后向LSTM
if bidirectional:
self.b_lstm = nn.ModuleList()
for i in range(num_layers):
if i == 0:
self.b_lstm.append(nn.LSTMCell(input_size=input_size, hidden_size=hidden_size))
else:
self.b_lstm.append(nn.LSTMCell(input_size=hidden_size, hidden_size=hidden_size))
def forward(self, input, hx=None):
# 初始化前向LSTM的隐状态和记忆状态
h_f = []
c_f = []
for i in range(self.num_layers):
h_f.append(torch.zeros(input.size(0), self.hidden_size).to(input.device))
c_f.append(torch.zeros(input.size(0), self.hidden_size).to(input.device))
# 初始化反向LSTM的隐状态和记忆状态
if self.bidirectional:
h_b = []
c_b = []
for i in range(self.num_layers):
h_b.append(torch.zeros(input.size(0), self.hidden_size).to(input.device))
c_b.append(torch.zeros(input.size(0), self.hidden_size).to(input.device))
# 前向传播
outputs = []
steps = range(input.size(1))
if self.batch_first:
steps = range(input.size(0))
for time in steps:
x = input[:, time, :]
for layer in range(self.num_layers):
h_prev_f = h_f[layer]
c_prev_f = c_f[layer]
h_f[layer], c_f[layer] = self.f_lstm[layer](x, (h_prev_f, c_prev_f))
x = h_f[layer]
if self.dropout != 0 and layer != self.num_layers - 1:
x = nn.Dropout(self.dropout)(x)
if self.bidirectional:
# 反向传播
x_b = input[:, -time-1, :]
for layer in range(self.num_layers):
h_prev_b = h_b[layer]
c_prev_b = c_b[layer]
h_b[layer], c_b[layer] = self.b_lstm[layer](x_b, (h_prev_b, c_prev_b))
x_b = h_b[layer]
if self.dropout != 0 and layer != self.num_layers - 1:
x_b = nn.Dropout(self.dropout)(x_b)
outputs.append(torch.cat([h_f[-1], h_b[-1]], dim=-1))
else:
outputs.append(h_f[-1])
output = torch.stack(outputs, dim=1)
return output, (h_f[-1], c_f[-1])
```
这个BiLSTM类实现了双向LSTM,输入和输出参数与nn.LSTM一致。我们使用了nn.LSTMCell来代替nn.LSTM,手动编写前向和反向传播,并使用nn.ModuleList来实现多层LSTM的叠加。您可以将这个类用于您的深度学习模型中,来实现双向LSTM的功能。
不使用torch.nn.LSTM,用pytorch写一个LSTM网络结构
以下是使用 PyTorch 实现 LSTM 网络的代码示例:
```python
import torch
import torch.nn as nn
class MyLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(MyLSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
# 定义 LSTM 层
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
def forward(self, x):
# 初始化 LSTM 隐藏状态和单元状态
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
# 前向传播
out, _ = self.lstm(x, (h0, c0))
return out
```
在这个代码示例中,我们定义了一个名为 `MyLSTM` 的继承自 `nn.Module` 的类,它包含了一个 LSTM 层。在类的初始化函数中,我们定义了 LSTM 层的输入维度 `input_size`、隐藏状态的维度 `hidden_size`,以及 LSTM 层的层数 `num_layers`。然后,我们使用 `nn.LSTM()` 函数定义了一个 LSTM 层,并将其保存在 `self.lstm` 中。
在前向传播函数中,我们首先初始化了 LSTM 的隐藏状态和单元状态 `h0` 和 `c0`,并将其转移到输入张量 `x` 所在的设备上。然后,我们使用输入张量 `x` 和隐藏状态和单元状态 `h0` 和 `c0` 调用了 `self.lstm()` 函数来进行前向传播,得到了输出张量 `out`。最后,我们将 `out` 返回作为 LSTM 网络的输出。
使用这个代码示例,我们可以创建一个 `MyLSTM` 对象,将输入张量传递给它,然后使用它来进行前向传播。
阅读全文