在c++中使用opencv,用sift特征匹配算法实现两张图像的匹配
时间: 2024-04-08 08:35:03 浏览: 95
在C++中使用OpenCV实现SIFT特征匹配算法,可以按照以下步骤进行:
1. 包含必要的头文件和命名空间:
```cpp
#include <opencv2/opencv.hpp>
#include <opencv2/xfeatures2d/nonfree.hpp>
using namespace cv;
using namespace cv::xfeatures2d;
```
2. 加载并显示待匹配的两张图像:
```cpp
Mat img1 = imread("image1.jpg", IMREAD_GRAYSCALE);
Mat img2 = imread("image2.jpg", IMREAD_GRAYSCALE);
imshow("Image 1", img1);
imshow("Image 2", img2);
waitKey(0);
```
3. 定义SIFT对象并提取关键点和描述符:
```cpp
Ptr<SIFT> sift = SIFT::create();
std::vector<KeyPoint> keypoints1, keypoints2;
Mat descriptors1, descriptors2;
sift->detectAndCompute(img1, noArray(), keypoints1, descriptors1);
sift->detectAndCompute(img2, noArray(), keypoints2, descriptors2);
```
4. 使用FLANN(快速最近邻搜索库)进行特征点匹配:
```cpp
FlannBasedMatcher matcher;
std::vector<DMatch> matches;
matcher.match(descriptors1, descriptors2, matches);
```
5. 筛选出最佳匹配的特征点对:
```cpp
double max_dist = 0;
double min_dist = 100;
for (int i = 0; i < descriptors1.rows; i++) {
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
std::vector<DMatch> good_matches;
for (int i = 0; i < descriptors1.rows; i++) {
if (matches[i].distance <= std::max(2 * min_dist, 0.02)) {
good_matches.push_back(matches[i]);
}
}
```
6. 绘制匹配的特征点对:
```cpp
Mat img_matches;
drawMatches(img1, keypoints1, img2, keypoints2, good_matches, img_matches);
imshow("Matches", img_matches);
waitKey(0);
```
这样就完成了使用SIFT特征匹配算法实现两张图像的匹配。请注意,以上代码仅供参考,实际应用中可能需要进行参数调整和错误处理。
阅读全文