origin多分类逻辑回归
时间: 2023-10-03 15:01:56 浏览: 183
在多分类逻辑回归中,我们需要考虑如何将原始的二分类逻辑回归扩展到多个类别的分类问题。通过使用LogisticRegression多分类模型,可以实现这一目标。
在多分类逻辑回归中,最困难的一步是确定如何进行N个类别的分类。我们可以使用一对多(one-vs-rest)方法来解决这个问题。具体来说,对于N个类别中的每一个类别,我们都训练一个二分类逻辑回归模型来将该类别与其他类别区分开来。然后,我们可以使用这些模型的预测结果来进行多分类任务。
在计算多分类逻辑回归时,需要注意成本函数的溢出问题。这主要是因为成本函数中的某些项可能会导致溢出(NaN)。为了解决这个问题,我们可以采用一些方法,如特征缩放、正则化等。特别是在特征矩阵X中存在某些项可能会导致溢出的情况下,我们需要对这些项进行处理。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [多类别逻辑回归](https://blog.csdn.net/weixin_62828995/article/details/129674664)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文