写一个ResNet50的结构Python
时间: 2024-03-06 07:25:34 浏览: 142
基于ResNet50的模型结构:ResNet50-ImageNet-CNTK
代码是什么?
好的,下面是ResNet50的结构Python代码:
```python
import tensorflow as tf
def identity_block(X, f, filters, stage, block):
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
F1, F2, F3 = filters
X_shortcut = X
X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base+'2a')(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+'2a')(X)
X = tf.keras.layers.Activation('relu')(X)
X = tf.keras.layers.Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base+'2b')(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+'2b')(X)
X = tf.keras.layers.Activation('relu')(X)
X = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base+'2c')(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+'2c')(X)
X = tf.keras.layers.Add()([X, X_shortcut])
X = tf.keras.layers.Activation('relu')(X)
return X
def convolutional_block(X, f, filters, stage, block, s=2):
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
F1, F2, F3 = filters
X_shortcut = X
X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base+'2a')(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+'2a')(X)
X = tf.keras.layers.Activation('relu')(X)
X = tf.keras.layers.Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base+'2b')(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+'2b')(X)
X = tf.keras.layers.Activation('relu')(X)
X = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base+'2c')(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+'2c')(X)
X_shortcut = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base+'1')(X_shortcut)
X_shortcut = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base+'1')(X_shortcut)
X = tf.keras.layers.Add()([X, X_shortcut])
X = tf.keras.layers.Activation('relu')(X)
return X
def ResNet50(input_shape=(64, 64, 3), classes=6):
X_input = tf.keras.layers.Input(input_shape)
X = tf.keras.layers.ZeroPadding2D((3, 3))(X_input)
X = tf.keras.layers.Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(X)
X = tf.keras.layers.BatchNormalization(axis=3, name='bn_conv1')(X)
X = tf.keras.layers.Activation('relu')(X)
X = tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2))(X)
X = convolutional_block(X, f=3, filters=[64, 64, 256], stage=2, block='a', s=1)
X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
X = convolutional_block(X, f=3, filters=[128, 128, 512], stage=3, block='a', s=2)
X = identity_block(X, 3, [128, 128, 512], stage=3, block='b')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='c')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='d')
X = convolutional_block(X, f=3, filters=[256, 256, 1024], stage=4, block='a', s=2)
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')
X = convolutional_block(X, f=3, filters=[512, 512, 2048], stage=5, block='a', s=2)
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')
X = tf.keras.layers.AveragePooling2D((2, 2), name='avg_pool')(X)
X = tf.keras.layers.Flatten()(X)
X = tf.keras.layers.Dense(classes, activation='softmax', name='fc'+str(classes))(X)
model = tf.keras.Model(inputs=X_input, outputs=X, name='ResNet50')
return model
```
这是一个基于tensorflow框架实现的ResNet50网络结构的Python代码。如果您对该代码还有任何疑问,请随时联系我。
阅读全文