用python代码求解
时间: 2024-10-27 16:01:41 浏览: 7
好的,我将为您提供一个Python代码示例,用于实现复化梯形公式、复化Simpson公式和Romberg求积公式的数值积分计算。我们将针对您提供的四个积分进行计算,并比较不同的步长对结果的影响。
首先,我们需要导入一些必要的库:
```python
import numpy as np
def trapezoidal_rule(f, a, b, n):
h = (b - a) / n
x = np.linspace(a, b, n+1)
y = f(x)
return h * (0.5 * y[0] + 0.5 * y[-1] + np.sum(y[1:-1]))
def simpsons_rule(f, a, b, n):
if n % 2 != 0:
raise ValueError("n must be even for Simpson's rule")
h = (b - a) / n
x = np.linspace(a, b, n+1)
y = f(x)
return h / 3 * (y[0] + y[-1] + 4 * np.sum(y[1:-1:2]) + 2 * np.sum(y[2:-1:2]))
def romberg_integration(f, a, b, tol=1e-6):
def richardson_extrapolation(R, k, j):
R[k][j] = (4**j * R[k-1][j-1] - R[k-1][j-2]) / (4**j - 1)
R = [[0] * 10 for _ in range(10)]
R[0][0] = trapezoidal_rule(f, a, b, 1)
k = 1
while True:
R[k][0] = trapezoidal_rule(f, a, b, 2**k)
for j in range(1, k+1):
richardson_extrapolation(R, k, j)
if abs(R[k][k] - R[k-1][k-1]) < tol:
break
k += 1
return R[k][k]
# 定义被积函数
f1 = lambda x: 4 * np.sin(np.pi * x) / (np.pi * x)
f2 = lambda x: np.sin(x) / x
f3 = lambda x: np.exp(-x**2) / (1 + x**4)
f4 = lambda x: np.log(1 + x) / (1 + x)
# 积分区间
a1, b1 = 1/4, 2
a2, b2 = 1, 10
a3, b3 = 0, 1
a4, b4 = 0, 1
# 不同步长下的积分计算
n_values = [10, 20]
for n in n_values:
print(f"Step size h = {n}")
# 计算第一个积分
I1_trapezoidal = trapezoidal_rule(f1, a1, b1, n)
I1_simpson = simpsons_rule(f1, a1, b1, n)
I1_romberg = romberg_integration(f1, a1, b1)
print(f"I1 (Trapezoidal): {I1_trapezoidal:.7f}, (Simpson): {I1_simpson:.7f}, (Romberg): {I1_romberg:.7f}")
# 计算第二个积分
I2_trapezoidal = trapezoidal_rule(f2, a2, b2, n)
I2_simpson = simpsons_rule(f2, a2, b2, n)
I2_romberg = romberg_integration(f2, a2, b2)
print(f"I2 (Trapezoidal): {I2_trapezoidal:.7f}, (Simpson): {I2_simpson:.7f}, (Romberg): {I2_romberg:.7f}")
# 计算第三个积分
I3_trapezoidal = trapezoidal_rule(f3, a3, b3, n)
I3_simpson = simpsons_rule(f3, a3, b3, n)
I3_romberg = romberg_integration(f3, a3, b3)
print(f"I3 (Trapezoidal): {I3_trapezoidal:.7f}, (Simpson): {I3_simpson:.7f}, (Romberg): {I3_romberg:.7f}")
# 计算第四个积分
I4_trapezoidal = trapezoidal_rule(f4, a4, b4, n)
I4_simpson = simpsons_rule(f4, a4, b4, n)
I4_romberg = romberg_integration(f4, a4, b4)
print(f"I4 (Trapezoidal): {I4_trapezoidal:.7f}, (Simpson): {I4_simpson:.7f}, (Romberg): {I4_romberg:.7f}\n")
```
### 说明
1. **复化梯形公式 (`trapezoidal_rule`)**:使用梯形法则进行数值积分。
2. **复化Simpson公式 (`simpsons_rule`)**:使用Simpson法则进行数值积分。
3. **Romberg求积公式 (`romberg_integration`)**:使用Richardson外推法进行数值积分。
### 运行结果
运行上述代码后,您将得到不同步长下每个积分的计算结果,并可以观察到不同方法之间的差异。
希望这个代码示例能帮助您理解和实现数值积分的不同方法。如果您有任何进一步的问题,请随时告诉我!
阅读全文