读取测试集中的灰度图像 img = cv2.imread('data/test/0.png', cv2.IMREAD_GRAYSCALE) # 对图像进行预处理,如归一化 img = img / 255.0 # 将图像转换为模型输入所需的形状,如 (1, 256, 256, 1) img = np.expand_dims(img, axis=0) img = np.expand_dims(img, axis=-1) # 使用模型对图像进行分割 pred = model.predict(img)出现了Input 0 of layer "model" is incompatible with the layer: expected shape=(None, 256, 256, 1), found shape=(None, 512, 512, 1)改这段代码
时间: 2023-08-21 13:01:39 浏览: 201
你需要将图片的大小调整为`(256, 256)`,然后再进行模型的预测,可以使用`cv2.resize()`函数对图像进行调整。调整后的代码如下所示:
```
img = cv2.imread('data/test/0.png', cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (256, 256))
img = img / 255.0
img = np.expand_dims(img, axis=0)
img = np.expand_dims(img, axis=-1)
pred = model.predict(img)
```
这样,你就可以避免图片大小与模型输入大小不匹配的问题,可以顺利进行模型预测了。
相关问题
import cv2 import numpy as np from keras.models import load_model # 加载模型 model = load_model('unet.h5') # 准备测试图像 img = cv2.imread('data/test/0.png', cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (256, 256)) img = np.expand_dims(img, axis=-1) img = img / 255.0 # 进行分割 pred = model.predict(np.array([img])) # 可以根据需要对预测结果进行后处理,比如二值化、腐蚀、膨胀等 pred = np.squeeze(pred) pred = np.where(pred > 0.5, 255, 0) pred = np.uint8(pred) # 保存预测结果 cv2.imwrite('data/test/x.png', pred)错在哪
这段代码的问题可能在于 `pred` 变量的形状不正确。在使用 `np.squeeze` 函数压缩维度时,如果 `pred` 的形状是 `(1, height, width, 1)`,则会将第一维压缩掉,变成 `(height, width, 1)`,这是我们想要的结果。但是,如果 `pred` 的形状本身就是 `(height, width, 1)`,则使用 `np.squeeze` 函数会将这一维度压缩掉,变成 `(height, width)`,这时候就会出现形状不匹配的问题。
为了避免这个问题,你可以使用 `np.reshape` 函数来调整 `pred` 的形状,例如:
```python
pred = np.reshape(pred, (height, width))
```
或者,你可以在模型的输出层中使用 `activation='sigmoid'` 参数,这样输出的张量形状就是 `(batch_size, height, width, 1)`,就不需要再使用 `np.squeeze` 函数了。
另外,如果测试图像是彩色图像,不应该使用 `cv2.IMREAD_GRAYSCALE` 参数将其读取为灰度图像,应该使用 `cv2.IMREAD_COLOR` 参数或者不指定参数读取为彩色图像。
最后,还需要确认 `img` 的维度是正确的,应该是 `(1, height, width, 1)`。
import cv2 import numpy as np import matplotlib.pyplot as plt gray = cv2.imread('digits.png', 0) digits = [np.hsplit(r, 100) for r in np.vsplit(gray, 50)] # 分解数字:50行,100列 np_digits = np.array(digits) # 转换为numpy数组 # 准备训练数据,转换为二维数组,每个图像400个像素 train_data = np_digits.reshape(-1, 400).astype(np.float32) train_labels = np.repeat(np.arange(10), 500)[:, np.newaxis] # 定义标志 knn = cv2.ml.KNearest_create() # 创建kNN分类器 knn.train(train_data, cv2.ml.ROW_SAMPLE, train_labels) # 训练模型 # 用绘图工具创建手写数字5图像(大小20x20)进行测试(黑白二值图像) test = cv2.imread('d5.png', 0) # 打开测试图像 test = cv2.resize(test, (20, 20)) # 转换为20x20大小 test_data = test.reshape(1, 400).astype(np.float32) # 转换为测试数据 ret, result, neighbours, dist = knn.findNearest(test_data, k=3) # 执行测试 print(result.ravel()) print(neighbours.ravel()) # 拍摄图像数字3,进行测试(非黑白二值图像) img2 = cv2.imread('d3.png', 0) img2 = cv2.resize(img2, (20, 20)) ret, img2 = cv2.threshold(img2, 150, 255, cv2.THRESH_BINARY_INV) # 反二值化阈值处理 test_data = img2.reshape(1, 400).astype(np.float32) # 转换为测试数据 ret, result, neighbours, dist = knn.findNearest(test_data, k=3) # 执行测试 print(result.ravel()) print(neighbours.ravel()) 以上代码怎么优化
下面是对代码的一些优化建议:
1. 使用 with 语句打开文件:在读取图片时,最好使用 with 语句打开文件,这样可以确保文件在使用后被正确关闭,也可以避免一些意外情况下的错误。
2. 使用 reshape 的 -1 参数:在将 digits 转换为 numpy 数组时,可以使用 reshape 函数的 -1 参数,这样 numpy 将自动计算数组的大小。
3. 使用 ravel 替换 flatten:在将结果打印出来时,可以使用 ravel 函数替换 flatten 函数,因为 ravel 函数返回的是一个视图,而不是一个副本,因此更加高效。
4. 优化二值化处理:在对测试图像进行二值化处理时,可以使用 adaptiveThreshold 函数来自适应地进行阈值处理,这比使用固定的阈值要更加准确。
5. 使用 plt.imshow 显示图像:在显示图像时,可以使用 plt.imshow 函数,这样可以更加方便地进行调整和处理。
6. 添加注释:在代码中添加注释,可以帮助其他人更好地理解代码的含义和作用。
下面是优化后的代码:
```
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 打开文件并读取灰度图像
with open('digits.png', 'rb') as f:
gray = cv2.imdecode(np.frombuffer(f.read(), np.uint8), cv2.IMREAD_GRAYSCALE)
# 分解数字:50行,100列
digits = np.hsplit(np.vstack(np.hsplit(gray, 100)), 50)
# 转换为numpy数组
np_digits = np.array(digits)
# 转换为二维数组,每个图像400个像素
train_data = np_digits.reshape(-1, 400).astype(np.float32)
# 定义标志
train_labels = np.repeat(np.arange(10), 500)[:, np.newaxis]
# 创建kNN分类器
knn = cv2.ml.KNearest_create()
# 训练模型
knn.train(train_data, cv2.ml.ROW_SAMPLE, train_labels)
# 用绘图工具创建手写数字5图像(大小20x20)进行测试(黑白二值图像)
test = cv2.imread('d5.png', cv2.IMREAD_GRAYSCALE)
# 转换为20x20大小
test = cv2.resize(test, (20, 20))
# 自适应阈值二值化处理
test = cv2.adaptiveThreshold(test, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2)
# 转换为测试数据
test_data = test.reshape(1, 400).astype(np.float32)
# 执行测试
ret, result, neighbours, dist = knn.findNearest(test_data, k=3)
# 打印测试结果
print(result.ravel())
print(neighbours.ravel())
# 拍摄图像数字3,进行测试(非黑白二值图像)
img2 = cv2.imread('d3.png', cv2.IMREAD_GRAYSCALE)
# 转换为20x20大小
img2 = cv2.resize(img2, (20, 20))
# 自适应阈值二值化处理
img2 = cv2.adaptiveThreshold(img2, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2)
# 转换为测试数据
test_data = img2.reshape(1, 400).astype(np.float32)
# 执行测试
ret, result, neighbours, dist = knn.findNearest(test_data, k=3)
# 打印测试结果
print(result.ravel())
print(neighbours.ravel())
# 显示测试图像
plt.imshow(test, cmap='gray')
plt.show()
# 显示训练图像
plt.imshow(gray, cmap='gray')
plt.show()
```
阅读全文