mediapipe0.8.9 通过holistic_tracking_cpu.pbtxt获取关键点,并通过关键点之间的向量的夹角来计算旋转角度计算右肩的旋转角度 c++

时间: 2024-02-18 15:03:22 浏览: 30
好的,您可以按照以下步骤来实现: 1. 首先,您需要使用MediaPipe Holistic模型来检测人体关键点。您可以使用OpenCV等库来加载图像并将其传递给Holistic模型进行推理。推理后,您将获得一个包含每个关键点位置的3D张量。 2. 然后,您需要使用这些关键点来计算右肩的旋转角度。具体来说,您需要使用右肩、右臂和右前臂的三个关键点来计算右肩的旋转角度。 3. 您可以使用向量的夹角来计算旋转角度。具体来说,您可以使用向量叉积和点积的组合公式来计算夹角。您可以使用以下代码来计算两个向量之间的夹角: ``` double angle = atan2(norm(cross(v1, v2)), dot(v1, v2)); ``` 其中,`v1`和`v2`是两个向量,`cross`和`dot`分别表示向量的叉积和点积运算,`norm`表示向量的模长。使用此公式,您可以计算出右肩旋转角度。 4. 最后,您可以将计算出的旋转角度转换为度数,并将其输出到控制台或保存到文件中。您可以使用以下代码将弧度转换为度数: ``` double angle_deg = angle * 180 / CV_PI; ``` 需要注意的是,以上仅为简单的示例代码,您需要根据您的实际需求进行相应的修改和调整。
相关问题

mediapipe0.8.9 通过holistic_tracking_cpu.pbtxt获取关键点,并通过关键点之间的向量的夹角来计算旋转角度计算右肩的旋转角度

非常感谢您的提问,我会尽力为您解答。 对于MediaPipe中的Holistic模型,它可以通过`holistic_tracking_cpu.pbtxt`文件获取关键点。其中,右肩的关键点索引为2。关于如何计算右肩的旋转角度,可以通过以下步骤实现: 1. 获取关键点坐标 可以将Holistic模型输出的`pose_landmarks`中,关键点索引为2的坐标值提取出来,作为右肩的坐标。具体实现可以参考以下代码: ```python import mediapipe as mp mp_holistic = mp.solutions.holistic holistic = mp_holistic.Holistic() # 进行姿势估计和关键点跟踪 results = holistic.process(image) # 获取右肩的坐标 right_shoulder_x = results.pose_landmarks.landmark[mp_holistic.PoseLandmark.RIGHT_SHOULDER].x right_shoulder_y = results.pose_landmarks.landmark[mp_holistic.PoseLandmark.RIGHT_SHOULDER].y right_shoulder_z = results.pose_landmarks.landmark[mp_holistic.PoseLandmark.RIGHT_SHOULDER].z ``` 2. 计算向量夹角 计算右肩的旋转角度,可以通过计算右肩与人体正前方向量之间的夹角来实现。具体实现可以参考以下代码: ```python import math # 获取人体正前方向量 front_vector = [0, 0, -1] # 获取右肩与关键点索引为1(颈部)的向量 shoulder_neck_vector = [ results.pose_landmarks.landmark[mp_holistic.PoseLandmark.RIGHT_SHOULDER].x - results.pose_landmarks.landmark[mp_holistic.PoseLandmark.NECK].x, results.pose_landmarks.landmark[mp_holistic.PoseLandmark.RIGHT_SHOULDER].y - results.pose_landmarks.landmark[mp_holistic.PoseLandmark.NECK].y, results.pose_landmarks.landmark[mp_holistic.PoseLandmark.RIGHT_SHOULDER].z - results.pose_landmarks.landmark[mp_holistic.PoseLandmark.NECK].z ] # 计算右肩与人体正前方向量之间的夹角 cos_angle = (front_vector[0]*shoulder_neck_vector[0] + front_vector[1]*shoulder_neck_vector[1] + front_vector[2]*shoulder_neck_vector[2]) \ / (math.sqrt(front_vector[0]**2 + front_vector[1]**2 + front_vector[2]**2) * math.sqrt(shoulder_neck_vector[0]**2 + shoulder_neck_vector[1]**2 + shoulder_neck_vector[2]**2)) angle = math.degrees(math.acos(cos_angle)) ``` 以上代码将计算出右肩与人体正前方向量之间的夹角,并将其转化为角度值。最终的旋转角度即为该角度值。 希望以上代码可以帮助您解决问题,如有任何疑问,请随时提出。

mediapipe0.8.9 通过holistic_tracking_cpu.pbtxt获取关键点,并计算索引11的旋转角度

您可以通过以下步骤使用mediapipe 0.8.9通过`holistic_tracking_cpu.pbtxt`获取关键点,并计算索引11的旋转角度: 1. 导入必要的头文件和命名空间: ```c++ #include <fstream> #include <sstream> #include <iostream> #include <opencv2/opencv.hpp> #include <mediapipe/framework/calculator_framework.h> #include <mediapipe/framework/formats/image_frame.h> #include <mediapipe/framework/formats/landmark.pb.h> #include <mediapipe/framework/formats/rect.pb.h> using namespace std; using namespace cv; using namespace mediapipe; ``` 2. 定义图形文件和计算图: ```c++ // 定义图形文件和计算图 const char graph[] = R"( input_stream: "input_video" output_stream: "output_video" node { calculator: "HolisticTrackingCpu" input_stream: "IMAGE:input_video" output_stream: "LANDMARKS:landmarks" output_stream: "POSE_LANDMARKS:pose_landmarks" output_stream: "FACE_LANDMARKS:face_landmarks" output_stream: "LEFT_HAND_LANDMARKS:left_hand_landmarks" output_stream: "RIGHT_HAND_LANDMARKS:right_hand_landmarks" } node { calculator: "Renderer" input_stream: "IMAGE:input_video" input_stream: "LANDMARKS:landmarks" input_stream: "POSE_LANDMARKS:pose_landmarks" input_stream: "FACE_LANDMARKS:face_landmarks" input_stream: "LEFT_HAND_LANDMARKS:left_hand_landmarks" input_stream: "RIGHT_HAND_LANDMARKS:right_hand_landmarks" output_stream: "output_video" } )"; // 定义计算图函数 void RunMPPGraph() { // 创建图形文件并将计算图加载到其中 CalculatorGraphConfig config = ParseTextProtoOrDie<CalculatorGraphConfig>(graph); CalculatorGraph graph; graph.Initialize(config); // 获取输入和输出流 auto input_video = graph.GetInputStream("input_video").Value(); auto output_video = graph.GetOutputStream("output_video").Value(); auto landmarks_output = graph.GetOutputStream("landmarks").Value(); // 打开视频文件 VideoCapture capture("test_video.mp4"); // 按帧处理视频 Mat frame; int frame_count = 0; while (capture.read(frame)) { // 将帧转换为mediapipe格式 auto input_frame = absl::make_unique<ImageFrame>(ImageFormat::SRGB, frame.cols, frame.rows, ImageFrame::kDefaultAlignmentBoundary); cv::Mat input_frame_mat = mediapipe::formats::MatView(input_frame.get()); cv::cvtColor(frame, input_frame_mat, cv::COLOR_BGR2RGB); // 将帧发送到图形中进行处理 input_video->Send(std::move(input_frame)); input_video->Close(); // 等待处理结果 auto landmarks = absl::make_unique<std::vector<NormalizedLandmarkList>>(); while (landmarks_output->Available()) { auto landmark_packet = landmarks_output->PopPacket(); auto& landmark_list = landmark_packet.Get<NormalizedLandmarkList>(); landmarks->emplace_back(landmark_list); } // 渲染处理结果并将其输出到视频文件 auto output_frame_packet = output_video->Consume(); if (!output_frame_packet.IsEmpty()) { cv::Mat output_frame_mat = mediapipe::formats::MatView(&output_frame_packet.Get<ImageFrame>()); cv::cvtColor(output_frame_mat, frame, cv::COLOR_RGB2BGR); // 计算索引11的旋转角度 if (!landmarks->empty()) { const auto& landmark_list = landmarks->at(0); if (landmark_list.landmark_size() > 11) { const auto& point = landmark_list.landmark(11); const auto& prev_point = landmark_list.landmark(10); const float angleX = atan2(point.y() - prev_point.y(), point.z() - prev_point.z()); const float angleY = atan2(point.x() - prev_point.x(), point.z() - prev_point.z()); const float angleZ = atan2(point.y() - prev_point.y(), point.x() - prev_point.x()); // 在控制台输出旋转角度 std::cout << "Rotation angles: " << angleX << ", " << angleY << ", " << angleZ << std::endl; } } // 显示视频帧 imshow("Output Video", frame); waitKey(1); } ++frame_count; std::cout << "Frames processed: " << frame_count << std::endl; } // 关闭图形 graph.CloseAllPacketSources(); graph.WaitUntilDone(); } ``` 3. 运行计算图: ```c++ int main() { // 运行计算图 google::InitGoogleLogging("MediaPipe"); absl::SetFlag(&FLAGS_alsologtostderr, 1); RunMPPGraph(); return 0; } ``` 在上面的示例代码中,我们首先定义了`holistic_tracking_cpu.pbtxt`所需的计算图。然后,我们开启视频文件并处理每个视频帧。在处理每个视频帧时,我们将帧转换为mediapipe格式,并将其发送到计算图中进行处理。然后,我们等待处理结果,并从中提取索引11的关键点坐标。最后,我们计算索引11的旋转角度,并在控制台输出结果。 请注意,上面的示例代码仅适用于mediapipe 0.8.9版本,并且假设您已经安装了mediapipe的所有依赖项。如果您使用的是其他版本的mediapipe,您需要相应地调整代码。

相关推荐

最新推荐

recommend-type

地县级城市建设道路清扫保洁面积 道路清扫保洁面积道路机械化清扫保洁面积 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

从网站上学习到了路由的一系列代码

今天的学习圆满了
recommend-type

基于AT89C51单片机的可手动定时控制的智能窗帘设计.zip-11

压缩包构造:程序、仿真、原理图、pcb、任务书、结构框图、流程图、开题文档、设计文档、元件清单、实物图、焊接注意事项、实物演示视频、运行图片、功能说明、使用前必读。 仿真构造:AT89C51,LCD液晶显示器,5功能按键,步进器,灯。 代码文档:代码1024行有注释;设计文档18819字。 功能介绍:系统具有手动、定时、光控、温控和湿度控制五种模式。在手动模式下,两个按钮可控制窗帘的开合;定时模式下,根据预设时间自动开合窗帘;光控模式下,当光照超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭;温控模式下,当温度超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭;湿度控制模式下,当湿度超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭。按钮可用于调节阈值、选择模式、设置时间等。
recommend-type

007_insert_seal_approval_cursor.sql

007_insert_seal_approval_cursor.sql
recommend-type

springboot072基于JavaWeb技术的在线考试系统设计与实现.zip

java基于SpringBoot+vue在线考试系统源码 带毕业论文+PPT 【资源说明】 1、开发环境:SpringBoot框架;内含Mysql数据库;VUE技术;内含说明文档 2、该资源包括项目的全部源码,下载可以直接使用! 3、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 4、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。