光滑牛顿法求解信赖域子问题python代码
时间: 2023-10-17 09:11:51 浏览: 139
改进信赖域牛顿算法_信赖域牛顿CG算法_信赖域_截断共轭梯度_
5星 · 资源好评率100%
以下是使用Python实现的光滑牛顿法求解信赖域子问题的代码:
```python
import numpy as np
from numpy.linalg import norm
from scipy.optimize import minimize_scalar
def smooth_newton(trust_radius, x0, f, g, h):
x = x0
while True:
# Compute the gradient and Hessian at the current point
grad = g(x)
H = h(x)
# Solve the trust region subproblem
p = compute_step(grad, H, trust_radius)
x_new = x + p
# Compute the actual reduction and predicted reduction
actual_reduction = f(x) - f(x_new)
predicted_reduction = -grad.dot(p) - 0.5 * p.dot(H.dot(p))
# Compute the ratio of actual reduction to predicted reduction
rho = actual_reduction / predicted_reduction
# Update the trust region radius
if rho < 0.25:
trust_radius /= 2
elif rho > 0.75 and norm(p) == trust_radius:
trust_radius = min(2*trust_radius, 1e8)
# Update the iterate
if rho > 0:
x = x_new
# Check for convergence
if norm(grad) < 1e-6:
break
return x
def compute_step(grad, H, trust_radius):
# Solve the trust region subproblem using the dogleg method
p_u = -np.linalg.solve(H, grad)
if norm(p_u) <= trust_radius:
return p_u
else:
p_b = -grad.dot(grad) / grad.dot(H.dot(grad)) * grad
if norm(p_b) >= trust_radius:
return trust_radius / norm(grad) * grad
else:
a = norm(p_u - p_b)**2
b = 2 * p_b.dot(p_u - p_b)
c = norm(p_b)**2 - trust_radius**2
tau = (-b + np.sqrt(b**2 - 4*a*c)) / (2*a)
return p_b + tau * (p_u - p_b)
# Example usage
def f(x):
return x[0]**2 + x[1]**2
def g(x):
return np.array([2*x[0], 2*x[1]])
def h(x):
return np.array([[2, 0], [0, 2]])
x0 = np.array([1, 1])
trust_radius = 1.0
x = smooth_newton(trust_radius, x0, f, g, h)
print("Optimal solution:", x)
```
在上面的代码中,`smooth_newton`函数实现了光滑牛顿法的迭代过程,包括求解信赖域子问题、更新信赖域半径、更新迭代点等步骤。`compute_step`函数实现了用狗腿方法求解信赖域子问题的过程。在示例中,我们使用了一个简单的二次函数作为目标函数,以演示光滑牛顿法的使用方法。
阅读全文