光滑牛顿法信赖域子问题求解python程序
时间: 2023-09-05 16:13:02 浏览: 128
以下是一个简单的Python程序,用于解决信赖域子问题:
```python
import numpy as np
from scipy.optimize import minimize_scalar
def trust_region_subproblem(grad_f, hess_f, radius):
"""
Trust region subproblem solver using the dogleg method
"""
g = grad_f.reshape(-1, 1)
B = hess_f
p_u = -np.linalg.solve(B, g)
norm_p_u = np.linalg.norm(p_u)
if norm_p_u <= radius:
# Return the unconstrained solution
return p_u.flatten()
p_b = -(g.T @ g) / (g.T @ B @ g) * g.flatten()
norm_p_b = np.linalg.norm(p_b)
if norm_p_b >= radius:
# Return the boundary solution
return radius / norm_p_u * p_u.flatten()
# Solve the quadratic model
a = np.linalg.norm(p_u - p_b) ** 2
b = 2 * p_b.T @ (p_u - p_b)
c = np.linalg.norm(p_b) ** 2 - radius ** 2
alpha = (-b + np.sqrt(b ** 2 - 4 * a * c)) / (2 * a)
p_d = p_b + alpha * (p_u - p_b)
return p_d.flatten()
# Example usage
def f(x):
return x[0] ** 2 + x[1] ** 2
def grad_f(x):
return np.array([2 * x[0], 2 * x[1]])
def hess_f(x):
return np.array([[2, 0], [0, 2]])
x0 = np.array([1, 1])
radius = 1.0
p = trust_region_subproblem(grad_f(x0), hess_f(x0), radius)
print(p)
```
在此示例中,我们定义了一个简单的二次函数f(x)= x [0] ** 2 + x [1] ** 2,并使用牛顿法求解其最小值。我们使用了Scipy库中的minimize_scalar函数来解决一维子问题。我们还定义了一个trust_region_subproblem函数,该函数使用dogleg方法解决了信赖域子问题。
阅读全文