Antlr4 中的type()

时间: 2024-04-14 12:31:41 浏览: 26
在 ANTLR4 中,type() 是一个方法,用于获取词法分析器返回的当前词法符号的类型。词法符号是词法分析器根据定义的词法规则生成的,代表源代码中的不同词法单元(如关键字、标识符、运算符等)。 type() 方法返回一个整数值,表示当前词法符号的类型。这个类型值是根据 ANTLR4 生成的词法分析器的自动生成的,每个词法规则对应一个唯一的类型值。 在语法分析器中,我们可以通过调用 type() 方法来获取当前词法符号的类型,并根据不同的类型进行相应的语法处理。例如,可以使用 switch 语句或 if-else 语句对不同类型的词法符号进行不同的操作。 需要注意的是,type() 方法只能在语法分析器中使用,用于获取当前词法符号的类型。在词法分析器中,应该使用 getATNState() 方法来获取当前词法规则状态。
相关问题

antlr4 解析C代码

ANTLR4 可以用来解析 C 代码,但是需要先编写好 C 语言的词法和语法规则。你可以使用 ANTLR4 提供的 C 语言语法规范作为参考,该语法规范定义了 C 语言的词法结构和语法结构。 具体来说,你需要使用 ANTLR4 编写 C 语言的词法规则和语法规则。词法规则用来将 C 代码分解成一个个词法单元(Token),语法规则用来将 Token 组合成一个抽象语法树(AST)。 下面是一个简单的示例,演示如何使用 ANTLR4 解析 C 代码: 1. 编写 C 语言的词法规则和语法规则(以 C99 标准为例): ``` grammar C99; compilationUnit : externalDeclaration+ ; externalDeclaration : functionDefinition | declaration ; functionDefinition : declarationSpecifiers declarator declarationList? compoundStatement ; declaration : declarationSpecifiers (initDeclaratorList)? ';' ; declarationSpecifiers : (storageClassSpecifier | typeSpecifier | typeQualifier)* ; initDeclaratorList : initDeclarator (',' initDeclarator)* ; initDeclarator : declarator ('=' initializer)? ; declarator : pointer? directDeclarator ; pointer : '*' typeQualifier* pointer? ; directDeclarator : identifier | '(' declarator ')' | directDeclarator '[' constantExpression? ']' ; typeQualifier : 'const' | 'volatile' ; typeSpecifier : 'void' | 'char' | 'short' | 'int' | 'long' | 'float' | 'double' | 'signed' | 'unsigned' | structOrUnionSpecifier | enumSpecifier | typedefName ; structOrUnionSpecifier : ('struct' | 'union') identifier? '{' structDeclaration* '}' ; structDeclaration : specifierQualifierList structDeclaratorList? ';' ; specifierQualifierList : (typeSpecifier | typeQualifier)+ ; structDeclaratorList : structDeclarator (',' structDeclarator)* ; structDeclarator : declarator? (':' constantExpression)? ; enumSpecifier : 'enum' identifier? '{' enumeratorList? '}' ; enumeratorList : enumerator (',' enumerator)* ; enumerator : identifier ('=' constantExpression)? ; typedefName : identifier ; initializer : assignmentExpression | '{' initializerList '}' | '{' initializerList ',' '}' ; initializerList : initializer (',' initializer)* ; statement : labeledStatement | compoundStatement | expressionStatement | selectionStatement | iterationStatement | jumpStatement ; labeledStatement : identifier ':' statement | 'case' constantExpression ':' statement | 'default' ':' statement ; compoundStatement : '{' (declaration | statement)* '}' ; expressionStatement : expression? ';' ; selectionStatement : 'if' '(' expression ')' statement ('else' statement)? | 'switch' '(' expression ')' statement ; iterationStatement : 'while' '(' expression ')' statement | 'do' statement 'while' '(' expression ')' | 'for' '(' expressionStatement expressionStatement? ')' statement ; jumpStatement : 'goto' identifier ';' | 'continue' ';' | 'break' ';' | 'return' expression? ';' ; expression : assignmentExpression (',' assignmentExpression)* ; assignmentExpression : conditionalExpression | unaryExpression assignmentOperator assignmentExpression ; conditionalExpression : logicalOrExpression ('?' expression ':' conditionalExpression)? ; logicalOrExpression : logicalAndExpression ('||' logicalAndExpression)* ; logicalAndExpression : inclusiveOrExpression ('&&' inclusiveOrExpression)* ; inclusiveOrExpression : exclusiveOrExpression ('|' exclusiveOrExpression)* ; exclusiveOrExpression : andExpression ('^' andExpression)* ; andExpression : equalityExpression ('&' equalityExpression)* ; equalityExpression : relationalExpression (('==' | '!=') relationalExpression)* ; relationalExpression : shiftExpression (('<' | '>' | '<=' | '>=') shiftExpression)* ; shiftExpression : additiveExpression (('<<' | '>>') additiveExpression)* ; additiveExpression : multiplicativeExpression (('+' | '-') multiplicativeExpression)* ; multiplicativeExpression : castExpression (('*' | '/' | '%') castExpression)* ; castExpression : '(' typeName ')' castExpression | unaryExpression ; unaryExpression : postfixExpression | ('++' | '--') unaryExpression | unaryOperator castExpression | sizeof unaryExpression | sizeof '(' typeName ')' ; postfixExpression : primaryExpression ( '[' expression ']' | '(' argumentExpressionList? ')' | '.' identifier | '->' identifier | '++' | '--' )* ; argumentExpressionList : assignmentExpression (',' assignmentExpression)* ; primaryExpression : identifier | constant | stringLiteral | '(' expression ')' ; constant : integerConstant | floatingConstant | enumerationConstant ; integerConstant : decimalConstant | octalConstant | hexadecimalConstant ; decimalConstant : ('0' | nonZeroDigit digit* ) ; octalConstant : '0' octalDigit* ; hexadecimalConstant : '0x' hexDigit+ ; floatingConstant : decimalFloatingConstant | hexadecimalFloatingConstant ; decimalFloatingConstant : fraction | exponent | fraction exponent ; fraction : digit+ '.' digit* ; exponent : ('e' | 'E') ('+' | '-')? digit+ ; hexadecimalFloatingConstant : hexadecimalPrefix hexFraction binaryExponent | hexadecimalPrefix hexadecimalDigit+ binaryExponent ; hexPrefix : ('0x' | '0X') ; hexFraction : hexadecimalDigit* '.' hexadecimalDigit+ | hexadecimalDigit+ '.' ; binaryExponent : ('p' | 'P') ('+' | '-')? digit+ ; enumerationConstant : identifier ; identifier : [a-zA-Z_] [a-zA-Z_0-9]* ; stringLiteral : '"' [^"\n]* '"' ; constantExpression : conditionalExpression ; typeName : specifierQualifierList abstractDeclarator? ; abstractDeclarator : pointer? directAbstractDeclarator ; directAbstractDeclarator : '(' abstractDeclarator ')' | '[' '*'? ']' | '[' directAbstractDeclarator ']' '[' assignmentExpression? ']' | '(' parameterTypeList? ')' ; parameterTypeList : parameterList (',' '...')? ; parameterList : parameterDeclaration (',' parameterDeclaration)* ; parameterDeclaration : declarationSpecifiers declarator | declarationSpecifiers abstractDeclarator? ; ``` 2. 使用 ANTLR4 生成 C 解析器的代码: ``` antlr4 C99.g4 javac C99*.java ``` 3. 编写一个 Java 类来读取 C 代码文件并解析: ``` import org.antlr.v4.runtime.*; import org.antlr.v4.runtime.tree.*; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; public class CParser { public static void main(String[] args) throws IOException { String inputFile = null; if (args.length > 0) inputFile = args[0]; InputStream is = System.in; if (inputFile != null) is = new FileInputStream(inputFile); CharStream input = CharStreams.fromStream(is); CLexer lexer = new CLexer(input); CommonTokenStream tokens = new CommonTokenStream(lexer); C99Parser parser = new C99Parser(tokens); ParseTree tree = parser.compilationUnit(); // 解析 C 代码文件 System.out.println(tree.toStringTree(parser)); } } ``` 4. 运行 Java 程序来解析 C 代码文件: ``` java CParser test.c ``` 其中,`test.c` 是需要解析的 C 代码文件。 这样,就可以使用 ANTLR4 解析 C 代码了。需要注意的是,ANTLR4 生成的解析器只能解析语法正确的 C 代码,如果 C 代码存在语法错误,解析器将会抛出异常。

antlr4中如何专门让~(NEWTYPE)+匹配文本中的空格进行保留

您可以在 ANTLR4 的语法规则中使用语义谓词(semantic predicate)来实现保留空格。具体来说,您可以在规则中添加一个谓词,使其仅在满足某些条件时才匹配。例如,假设您的规则如下所示: ``` rule : ~(NEWTYPE)+ ; ``` 要保留空格,您可以添加一个谓词,使其在匹配空格时才返回 true。例如: ``` rule : {isNotSpace()}? ~(NEWTYPE)+ ; isNotSpace() : {Character.isWhitespace(_input.LA(-1))}?; ``` 在上面的示例中,`{isNotSpace()}?` 是一个语义谓词,它将匹配前一个字符不是空格时的 `rule` 规则。`isNotSpace()` 是一个自定义的谓词规则,它使用 `_input.LA(-1)` 访问输入流中的前一个字符,并检查它是否为空格。如果前一个字符不是空格,则返回 true,否则返回 false。 请注意,使用语义谓词会降低解析性能,因为 ANTLR4 需要在运行时计算谓词。因此,谨慎使用谓词,并确保它们是必要的。

相关推荐

Log data follows: | DEBUG: Executing shell function do_configure | CMake Warning at CMakeLists.txt:7 (message): | Build type not set, falling back to Release mode. | | To specify build type use: | -DCMAKE_BUILD_TYPE=<mode> where <mode> is Debug or Release. | | | -- Building without demo. To enable demo build use: -DWITH_DEMO=True | -- The C compiler identification is GNU 7.3.0 | -- The CXX compiler identification is GNU 7.3.0 | -- Check for working C compiler: /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/recipe-sysroot-native/usr/bin/aarch64-niic-linux/aarch64-niic-linux-gcc | -- Check for working C compiler: /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/recipe-sysroot-native/usr/bin/aarch64-niic-linux/aarch64-niic-linux-gcc -- works | -- Detecting C compiler ABI info | -- Detecting C compiler ABI info - done | -- Detecting C compile features | -- Detecting C compile features - done | -- Check for working CXX compiler: /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/recipe-sysroot-native/usr/bin/aarch64-niic-linux/aarch64-niic-linux-g++ | -- Check for working CXX compiler: /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/recipe-sysroot-native/usr/bin/aarch64-niic-linux/aarch64-niic-linux-g++ -- works | -- Detecting CXX compiler ABI info | -- Detecting CXX compiler ABI info - done | -- Detecting CXX compile features | -- Detecting CXX compile features - done | -- Found PkgConfig: /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/recipe-sysroot-native/usr/bin/pkg-config (found version "0.29.2") | -- Checking for module 'uuid' | -- Found uuid, version 2.32.1 | -- Output libraries to /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/git/runtime/Cpp/dist | CMake Error at runtime/CMakeLists.txt:104 (install): | install TARGETS given no LIBRARY DESTINATION for shared library target | "antlr4_shared". | | | CMake Error at runtime/CMakeLists.txt:107 (install): | install TARGETS given no ARCHIVE DESTINATION for static library target | "antlr4_static". | | | -- Configuring incomplete, errors occurred! | See also "/home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/build/CMakeFiles/CMakeOutput.log".这是报错的log,如何解决这个问题

最新推荐

recommend-type

The+Definitive+ANTLR+4+Reference 学习笔记word

The+Definitive+ANTLR+4+Reference 学习笔记word The+Definitive+ANTLR+4+Reference 学习笔记word
recommend-type

基于stm32+FreeRTOS+ESP8266的实时天气系统

【作品名称】:基于stm32+FreeRTOS+ESP8266的实时天气系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:项目简介 基于stm32F407+FreeRTOS+ESP8266的实时气象站系统,通过物联网技术实时读取天气情况,温度以及自带了一个计时功能。 所需设备 stm32F407,淘晶驰串口屏,ESP8266; 串口屏连接串口3,ESP8266连接串口2,串口1用于打印状态。 实现过程 通过对ESP8266发送AT指令,从服务器读取天气的json数据,然后通过cJSON解码数据,最后FreeRTOS对任务进行管理(FreeRTOS和cJSON有冲突,需要将cJSON申请内存空间的函数替换成FreeRTOS申请内存的函数,每次解码后,一定要释放内存,否则解码会卡死,而且需要把Heap_size设置稍微大一点,推荐设置为4096)
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python字符串为空判断的常见问题解答:解决常见疑惑

![字符串为空判断](https://img-blog.csdnimg.cn/20210620130654176.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zOTQ0NTExNg==,size_16,color_FFFFFF,t_70) # 1. Python字符串为空判断的必要性 在Python编程中,字符串为空判断是至关重要的,它可以帮助我们处理各种场景,例如: - 数据验证:确保用户输入或从数据库获取的
recommend-type

c++ 中 static的作用

在C++中,static是一个常用的修饰符,它可以用来控制变量和函数的存储方式和可见性。static的作用主要有以下几个方面: 1. 静态局部变量:在函数内部定义的变量,加上static关键字后,该变量就被定义成为一个静态局部变量。静态局部变量只会被初始化一次,而且只能在函数内部访问,函数结束后仍然存在,直到程序结束才会被销毁。 2. 静态全局变量:在全局变量前加上static关键字,该变量就被定义成为一个静态全局变量。静态全局变量只能在当前文件中访问,其他文件无法访问,它的生命周期与程序的生命周期相同。 3. 静态成员变量:在类中定义的静态成员变量,可以被所有该类的对象共享,它的值在所