梯度下降算法和随机梯度下降算法的区别
时间: 2023-12-31 08:20:45 浏览: 266
基于Python实现的随机梯度下降算法.zip
梯度下降算法和随机梯度下降算法是优化算法中常用的两种方法,它们的区别主要体现在样本选择和计算方式上。
梯度下降算法是一种迭代优化算法,它通过计算损失函数关于参数的梯度来更新参数,使得损失函数逐渐减小。具体步骤如下:
1. 计算当前参数点的梯度。
2. 沿着负梯度方向更新参数。
3. 重复以上两个步骤,直到达到停止条件。
随机梯度下降算法是梯度下降算法的一种变体,它在每次更新参数时只使用一个样本的梯度。具体步骤如下:
1. 随机选择一个样本。
2. 计算该样本的梯度。
3. 沿着负梯度方向更新参数。
4. 重复以上三个步骤,直到达到停止条件。
梯度下降算法和随机梯度下降算法的主要区别在于样本选择和计算方式上。梯度下降算法使用全部样本的平均梯度来更新参数,因此每次迭代的计算量较大,但方向更准确。而随机梯度下降算法每次只使用一个样本的梯度来更新参数,计算量较小,但方向可能不够准确。由于随机梯度下降算法的计算速度快,尤其适用于大规模数据集和复杂模型的训练。
阅读全文