plt.fill_between(train_sizes, train_mean + train_std, train_mean - train_std, alpha=0.15, color='blue')是什么意思
时间: 2024-04-27 19:21:28 浏览: 175
这行代码是用来在学习曲线图中填充训练得分的标准差范围的,具体解释如下:
`plt.fill_between()`函数是用来在两条曲线之间填充颜色的,其中,第一个参数为x轴的值,第二个参数为y1轴的值,第三个参数为y2轴的值。alpha参数控制填充的透明度,取值范围为[0, 1],color参数控制填充的颜色。
`train_mean + train_std`和`train_mean - train_std`表示训练得分的上下标准差,即用训练得分的均值加减标准差来确定训练得分的范围。这样填充的范围就是均值加减标准差的区域,可以显示出训练集得分的变化范围。
最终,`plt.fill_between()`函数会在学习曲线上方和下方填充相应颜色的区域,以突出显示训练得分的变化范围。
相关问题
rf = RandomForestClassifier(n_estimators=90, max_depth=) train_sizes, train_scores, cv_scores = learning_curve(rf,x_train,y_train,cv=5,train_sizes=np.linspace(0.01,1,100)) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) cv_scores_mean = np.mean(cv_scores, axis=1) cv_scores_std = np.std(cv_scores, axis=1) fig = plt.figure(figsize=(8,6), dpi=200) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.plot(train_sizes, train_scores_mean, color='dodgerblue', alpha=0.8) ax.plot(train_sizes, cv_scores_mean, color='g', alpha=0.8) ax.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="dodgerblue") ax.fill_between(train_sizes, cv_scores_mean - cv_scores_std, cv_scores_mean + cv_scores_std, alpha=0.1, color="g") ax.legend(labels=['train_set_scores', 'cross_val_scores'], loc='best') ax.set_title('Learning curve of the random forests') ax.grid(True) ax.set_xlabel('The number of training samples') ax.set_ylabel('Model score') plt.savefig('Learning curve of the random forests.jpg') plt.show()
这段代码使用了随机森林分类器(RandomForestClassifier)进行训练,并使用学习曲线(learning_curve)来评估模型的性能。具体来说,它通过在训练集上逐渐增加样本数量,并在交叉验证集上计算模型得分,来绘制训练集和交叉验证集得分随训练集样本数量变化的曲线。这可以帮助我们判断模型是否存在过拟合或欠拟合的问题。
其中,n_estimators是指随机森林中树的个数,max_depth是指每棵树的最大深度。learning_curve函数中的train_sizes参数指定了训练集的大小范围,np.linspace(0.01,1,100)表示从0.01到1均匀取100个数,即训练集大小从1%到100%。cv参数指定了交叉验证的折数,这里设置为5。最后,绘制了训练集得分和交叉验证集得分随训练集样本数量变化的曲线,并保存了图片。
import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from arch import arch_model # 读取数据 data = pd.read_csv('三个-负标准化-二分.csv', index_col=0, parse_dates=True) data = data[['F4']] data = data.dropna() # 拆分训练集和测试集 train_data = data[:'2022-06-15'] test_data = data['2022-06-16':] # ARIMA模型 arima_model = sm.tsa.ARIMA(train_data, order=(10, 1, 0)).fit() # GARCH模型 garch_model = arch_model(arima_model.resid, vol='GARCH', p=1, q=1).fit() # 预测 forecast_mean = arima_model.forecast(steps=len(test_data))[0] forecast_vol = garch_model.forecast(horizon=len(test_data)) # 计算置信区间 forecast_upper = forecast_mean + 1.96 * forecast_vol.mean forecast_lower = forecast_mean - 1.96 * forecast_vol.mean # 绘制预测结果 plt.plot(test_data.index, test_data.values, label='Actual') plt.plot(test_data.index, forecast_mean, label='Forecast') plt.fill_between(test_data.index, forecast_upper, forecast_lower, color='gray', alpha=0.2) plt.legend() plt.show() # 数据检验 resid = arima_model.resid / garch_model.conditional_volatility sm.stats.acorr_ljungbox(resid, lags=[10])这段代码的问题
这段代码的主要问题是在导入模块时没有使用正确的语法,应该在每行语句之间添加换行符。另外,最后一行代码没有输出检验结果。正确的代码应该是这样的:
```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from arch import arch_model
# 读取数据
data = pd.read_csv('三个-负标准化-二分.csv', index_col=0, parse_dates=True)
data = data[['F4']]
data = data.dropna()
# 拆分训练集和测试集
train_data = data[:'2022-06-15']
test_data = data['2022-06-16':]
# ARIMA模型
arima_model = sm.tsa.ARIMA(train_data, order=(10, 1, 0)).fit()
# GARCH模型
garch_model = arch_model(arima_model.resid, vol='GARCH', p=1, q=1).fit()
# 预测
forecast_mean = arima_model.forecast(steps=len(test_data))[0]
forecast_vol = garch_model.forecast(horizon=len(test_data))
# 计算置信区间
forecast_upper = forecast_mean + 1.96 * forecast_vol.mean
forecast_lower = forecast_mean - 1.96 * forecast_vol.mean
# 绘制预测结果
plt.plot(test_data.index, test_data.values, label='Actual')
plt.plot(test_data.index, forecast_mean, label='Forecast')
plt.fill_between(test_data.index, forecast_upper, forecast_lower, color='gray', alpha=0.2)
plt.legend()
plt.show()
# 数据检验
resid = arima_model.resid / garch_model.conditional_volatility
lb_test = sm.stats.acorr_ljungbox(resid, lags=[10])
print(lb_test)
```
这样修改后,代码就可以正常执行了。
阅读全文