MATLAB while语句判断ismember函数的逻辑
时间: 2024-09-27 16:06:09 浏览: 39
MATLAB中的`while`语句是一种循环结构,它允许你在满足特定条件时反复执行一段代码。当与`ismember`函数一起使用时,`while`通常用于在一个数组或向量中查找目标元素,并在找到所有匹配项后停止循环。
`ismember`函数用于检查一个值是否存在于另一个数组中,返回的是一个布尔向量,其中对应元素表示源数组中每个元素是否存在目标数组中。你可以将这个布尔向量作为`while`循环的判断条件:
```matlab
% 假设我们有数组A和目标值B
A = [1, 2, 3, 4, 5];
B = 3;
% 初始化索引i和布尔向量found
i = 1;
found = false;
% 使用while循环查找B在A中的位置
while ~found
if ismember(B, A(i:end))
% 找到了,存储位置并设置found为true
index = i + find(A(i:end) == B, 1); % 注意find函数会返回第一个匹配的位置
fprintf('Found B at position %d\n', index);
found = true; % 结束循环
else
% 没找到,增加i继续搜索下一个部分
i = i + 1;
end
end
```
相关问题
用matlab判断是否符合多少标准
在MATLAB中,判断一个值或向量是否满足特定标准通常涉及到条件测试。你可以使用`if`、`while`、`for`循环以及逻辑运算符如`&&`(与)、`||`(或)来进行这种判断。下面是一些基本的操作:
1. 判断数值是否等于某个值:
```matlab
x = 5; % 假设这是你要检查的变量
if x == 10 % 检查是否等于10
disp('x is equal to 10');
else
disp('x is not equal to 10');
end
```
2. 判断数组元素是否大于或小于某阈值:
```matlab
arr = [3 7 12]; % 数组元素
threshold = 10;
condition = arr > threshold;
if any(condition) % 如果有任何元素大于阈值,则显示结果
disp('At least one element is greater than the threshold');
else
disp('All elements are below or equal to the threshold');
end
```
3. 使用`ismember`函数判断元素是否属于另一个集合:
```matlab
set1 = 1:5; % 第一个集合
set2 = [3 6 9]; % 第二个集合
if ismember(4, set1) % 判断4是否在set1中
disp('4 is in set1');
else
disp('4 is not in set1');
end
```
导航函数matlab代码
以下是使用曼哈顿距离作为导航函数的Matlab代码示例:
```matlab
function [path, cost] = Astar(start, goal, obstacles)
% 输入参数:
% start - 起点坐标
% goal - 终点坐标
% obstacles - 障碍物二维数组,1表示障碍物,0表示可通过
% 输出参数:
% path - 路径数组,每个元素为一个坐标点
% cost - 路径代价
% 计算曼哈顿距离
h = @(x,y) abs(x-goal(1)) + abs(y-goal(2));
% 初始化起点和终点节点
start_node = struct('pos', start, 'g', 0, 'h', h(start(1), start(2)), 'parent', []);
goal_node = struct('pos', goal, 'g', Inf, 'h', 0, 'parent', []);
% 初始化open和closed列表
open_list = [start_node];
closed_list = [];
while ~isempty(open_list)
% 从open列表中找到f值最小的节点
[min_f, min_idx] = min([open_list.g] + [open_list.h]);
current_node = open_list(min_idx);
% 如果当前节点是终点,则返回路径
if isequal(current_node.pos, goal_node.pos)
path = backtrack_path(current_node);
cost = current_node.g;
return;
end
% 将当前节点从open列表中移除,并添加到closed列表中
open_list(min_idx) = [];
closed_list(end+1) = current_node;
% 扩展当前节点的邻居节点
neighbors = get_neighbors(current_node, obstacles);
for i = 1:length(neighbors)
neighbor = neighbors(i);
% 如果邻居节点已经在closed列表中,则跳过
if ismember(neighbor, closed_list)
continue;
end
% 计算邻居节点的g值
new_g = current_node.g + 1;
% 如果邻居节点已经在open列表中,则更新g值和parent
open_idx = find(ismember(open_list, neighbor));
if ~isempty(open_idx)
if new_g < open_list(open_idx).g
open_list(open_idx).g = new_g;
open_list(open_idx).parent = current_node;
end
% 否则添加邻居节点到open列表中
else
neighbor.g = new_g;
neighbor.h = h(neighbor.pos(1), neighbor.pos(2));
neighbor.parent = current_node;
open_list(end+1) = neighbor;
end
end
end
% 如果open列表已经空了,但是仍然没有找到路径,则返回空
path = [];
cost = Inf;
end
% 获取当前节点的邻居节点
function neighbors = get_neighbors(node, obstacles)
x = node.pos(1);
y = node.pos(2);
neighbors = [];
if x > 1 && ~obstacles(x-1, y)
neighbors(end+1) = struct('pos', [x-1 y], 'g', Inf, 'h', 0, 'parent', []);
end
if x < size(obstacles, 1) && ~obstacles(x+1, y)
neighbors(end+1) = struct('pos', [x+1 y], 'g', Inf, 'h', 0, 'parent', []);
end
if y > 1 && ~obstacles(x, y-1)
neighbors(end+1) = struct('pos', [x y-1], 'g', Inf, 'h', 0, 'parent', []);
end
if y < size(obstacles, 2) && ~obstacles(x, y+1)
neighbors(end+1) = struct('pos', [x y+1], 'g', Inf, 'h', 0, 'parent', []);
end
end
% 回溯路径
function path = backtrack_path(node)
path = [node.pos];
while ~isempty(node.parent)
node = node.parent;
path = [node.pos; path];
end
end
```
上述代码实现了一个基于A*算法的路径规划器,其中使用曼哈顿距离作为导航函数。该代码可以在二维障碍物地图上进行路径规划,返回一条从起点到终点的最短路径。
阅读全文
相关推荐
















