shapley值的matlab代码
时间: 2023-06-16 18:06:11 浏览: 276
以下是计算Shapley值的Matlab代码示例:
假设有4个玩家,每个玩家都有一个对应的贡献值向量,向量中的每个元素表示该玩家对某个任务的贡献值。我们可以使用以下代码计算Shapley值:
```matlab
function shapley_values = calculate_shapley_values(contributions)
% contributions: n x m matrix, where n is the number of players and m is the number of tasks
n = size(contributions, 1); % number of players
m = size(contributions, 2); % number of tasks
% calculate factorial function
factorial_table = zeros(1, m);
for i = 1:m
factorial_table(i) = factorial(i-1);
end
shapley_values = zeros(1, n);
% iterate over all possible permutations of players
for perm = perms(1:n)'
for i = 1:n
if i == 1
coalition = perm(i);
marginal_contribution = contributions(coalition, :);
else
coalition = perm(1:i-1);
remaining_players = perm(i:end);
% calculate the average marginal contribution of the remaining players
average_marginal_contribution = mean(contributions(remaining_players, :)-marginal_contribution);
% calculate the number of permutations that include the remaining players
num_permutations = factorial_table(m-i+1)*factorial_table(i-1);
% add the weighted average marginal contribution to the Shapley value
shapley_values(coalition) = shapley_values(coalition) + num_permutations*average_marginal_contribution;
% update the marginal contribution
marginal_contribution = marginal_contribution + contributions(perm(i), :);
end
end
end
% normalize the Shapley values
shapley_values = shapley_values/factorial(m);
end
```
对于给定的贡献值矩阵,可以通过调用`calculate_shapley_values`函数来计算Shapley值。例如,如果贡献值矩阵为:
```matlab
contributions = [1 2 3 4; 2 3 4 5; 3 4 5 6; 4 5 6 7];
```
则可以通过以下代码计算Shapley值:
```matlab
shapley_values = calculate_shapley_values(contributions);
```
此代码将输出一个包含4个元素的向量,每个元素表示对应玩家的Shapley值。
阅读全文