优化X_norm[:, i] = fuzz.interp_membership(X[:, i], X[:, i], [np.min(X[:, i]), np.max(X[:, i])])
时间: 2023-08-18 19:12:17 浏览: 99
可以使用Numpy中的min和max函数来计算最小值和最大值,然后将它们传递给interp_membership函数,而不是使用两次X[:,i]作为参数。这样可以避免重复计算和重复传递数组。具体实现如下所示:
```
X_min = np.min(X[:, i])
X_max = np.max(X[:, i])
X_norm[:, i] = fuzz.interp_membership(X[:, i], [X_min, X_max], [X_min, X_max])
```
这样可以减少计算量,提高代码效率。
相关问题
X_norm[:, i] = fuzz.interp_membership(X[:, i], X[:, i], [np.min(X[:, i]), np.max(X[:, i])])优化
这段代码的作用是将X中第i列的数据归一化到[0, 1]的范围内。具体来说,fuzz.interp_membership函数将X[:, i]作为论域,以X[:, i]自身的最小值和最大值为两个端点,将X[:, i]中的每个值映射到[0, 1]之间。然后将这些映射后的值存储到X_norm[:, i]中,代表X中第i列的归一化后的数据。
class UNetEx(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3, weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None): super().__init__() assert len(filters) > 0 self.final_activation = final_activation self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers) decoders = [] for i in range(out_channels): decoders.append(create_decoder(1, filters, kernel_size, weight_norm, batch_norm, activation, layers)) self.decoders = nn.Sequential(*decoders) def encode(self, x): tensors = [] indices = [] sizes = [] for encoder in self.encoder: x = encoder(x) sizes.append(x.shape) tensors.append(x) x, ind = F.max_pool2d(x, 2, 2, return_mask=True) indices.append(ind) return x, tensors, indices, sizes def decode(self, _x, _tensors, _indices, _sizes): y = [] for _decoder in self.decoders: x = _x tensors = _tensors[:] indices = _indices[:] sizes = _sizes[:] for decoder in _decoder: tensor = tensors.pop() size = sizes.pop() ind = indices.pop() # 反池化操作,为上采样 x = F.max_unpool2d(x, ind, 2, 2, output_size=size) x = paddle.concat([tensor, x], axis=1) x = decoder(x) y.append(x) return paddle.concat(y, axis=1) def forward(self, x): x, tensors, indices, sizes = self.encode(x) x = self.decode(x, tensors, indices, sizes) if self.final_activation is not None: x = self.final_activation(x) return x 不修改上述神经网络的encoder和decoder的生成方式,用嘴少量的代码实现attention机制,在上述代码里修改。
可以在UNetEx类中加入一个Attention模块,然后在decode函数中使用该Attention模块。具体实现如下:
```
class Attention(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = nn.Conv2D(in_channels, out_channels, kernel_size=1)
self.conv2 = nn.Conv2D(out_channels, out_channels, kernel_size=1)
def forward(self, x, y):
x = self.conv1(x)
y = self.conv2(y)
z = paddle.add(x, y)
z = nn.functional.sigmoid(z)
z = paddle.multiply(x, z)
return z
class UNetEx(nn.Layer):
def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3,
weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None):
super().__init__()
assert len(filters) > 0
self.final_activation = final_activation
self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers)
self.attention = Attention(filters[-1], filters[-1])
decoders = []
for i in range(out_channels):
decoders.append(create_decoder(1, filters, kernel_size, weight_norm, batch_norm, activation, layers))
self.decoders = nn.Sequential(*decoders)
def encode(self, x):
tensors = []
indices = []
sizes = []
for encoder in self.encoder:
x = encoder(x)
sizes.append(x.shape)
tensors.append(x)
x, ind = F.max_pool2d(x, 2, 2, return_mask=True)
indices.append(ind)
return x, tensors, indices, sizes
def decode(self, _x, _tensors, _indices, _sizes):
y = []
for _decoder in self.decoders:
x = _x
tensors = _tensors[:]
indices = _indices[:]
sizes = _sizes[:]
for decoder in _decoder:
tensor = tensors.pop()
size = sizes.pop()
ind = indices.pop()
# 反池化操作,为上采样
x = F.max_unpool2d(x, ind, 2, 2, output_size=size)
x = self.attention(tensor, x) # 使用Attention模块
x = decoder(x)
y.append(x)
return paddle.concat(y, axis=1)
def forward(self, x):
x, tensors, indices, sizes = self.encode(x)
x = self.decode(x, tensors, indices, sizes)
if self.final_activation is not None:
x = self.final_activation(x)
return x
```
在该代码中,我们增加了一个Attention类,它接收两个特征图,通过两个1x1卷积层将它们映射到同一维度,然后将它们相加并通过sigmoid函数归一化,最后将第一个特征图与归一化后的结果相乘得到注意力加权后的特征图。在UNetEx类中,我们在decoder函数中使用了Attention类,并将encoder中的最后一层特征图与decoder中的每一层特征图进行注意力加权。这样就实现了在UNetEx中加入Attention机制。
阅读全文