cbam注意力机制YOLOV5
时间: 2023-09-21 19:12:49 浏览: 156
yolov5-attention
CBAM(Convolutional Block Attention Module)注意力机制是一种用于改进YOLOv5模型的注意力机制。引用和中的博客文章提供了将CBAM注意力机制添加到YOLOv5模型的具体方法和步骤。其中,作者在YOLOv5的主干网络中加入了CBAM模块,以提高模型对特征图的关注能力和感知能力。
具体来说,CBAM注意力机制包含两个模块:通道注意力模块(Channel Attention Module)和空间注意力模块(Spatial Attention Module)。通道注意力模块通过全局平均池化和全连接层来学习特征图中通道之间的依赖关系,从而增强对重要通道的关注。空间注意力模块通过一系列的卷积和池化操作来学习特征图中不同位置的空间关系,从而增强对重要位置的关注。
引用中的博客文章介绍了一种添加ECA(Efficient Channel Attention)和CA(Channel Attention)注意力的方法,这种方法也可以参考来添加CBAM注意力机制。而引用中的博客文章提到另一种添加注意力的方法,该方法会加载预训练权重。
综上所述,要在YOLOv5模型中添加CBAM注意力机制,可以参考引用和中的博客文章提供的具体方法,并可以参考引用和中的博客文章提供的其他添加注意力的方法。这些方法可以提高YOLOv5模型的准确性和性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
阅读全文