DWA路径规划算法代码
时间: 2023-06-30 11:12:46 浏览: 116
以下是一个Python实现的DWA路径规划算法的简单示例代码:
```python
import numpy as np
# 机器人的动力学模型,这里简化为一个点质量模型,可以根据实际情况进行修改
class RobotModel:
def __init__(self, max_speed, max_yaw_rate):
self.max_speed = max_speed
self.max_yaw_rate = max_yaw_rate
def simulate(self, state, v, w, dt):
x, y, yaw, _, _ = state
x += v * np.cos(yaw) * dt
y += v * np.sin(yaw) * dt
yaw += w * dt
return np.array([x, y, yaw, v, w])
# DWA路径规划算法
class DWAPlanner:
def __init__(self, robot_model, max_speed, max_yaw_rate, max_accel, max_dyaw_rate, dt, predict_time, goal_tolerance):
self.robot_model = robot_model
self.max_speed = max_speed
self.max_yaw_rate = max_yaw_rate
self.max_accel = max_accel
self.max_dyaw_rate = max_dyaw_rate
self.dt = dt
self.predict_time = predict_time
self.goal_tolerance = goal_tolerance
def plan(self, state, goal):
# 动态窗口的范围
v_min, v_max = 0, self.max_speed
w_min, w_max = -self.max_yaw_rate, self.max_yaw_rate
v_reso, w_reso = 0.1, 0.1
# 动态窗口评价
best_traj, best_score = None, float('-inf')
for v in np.arange(v_min, v_max, v_reso):
for w in np.arange(w_min, w_max, w_reso):
traj = self.generate_trajectory(state, v, w)
score = self.evaluate_trajectory(traj, goal)
if score > best_score:
best_traj, best_score = traj, score
return best_traj
# 生成一条轨迹,根据机器人动力学模型模拟运动
def generate_trajectory(self, state, v, w):
traj = [state]
for i in range(int(self.predict_time / self.dt)):
state = self.robot_model.simulate(state, v, w, self.dt)
traj.append(state)
return np.array(traj)
# 评价轨迹,根据预定义的代价函数进行评分
def evaluate_trajectory(self, traj, goal):
dist = np.linalg.norm(traj[-1][:2] - goal[:2])
heading = np.abs(traj[-1][2] - goal[2])
speed = traj[-1][3]
score = np.exp(-dist / self.goal_tolerance) + np.exp(-heading) + np.exp(-speed / self.max_speed)
return score
```
这只是一个简单的示例代码,实际上DWA路径规划算法的实现要考虑更多的细节和实际情况,需要在实际应用中进行修改和优化。
阅读全文