dqn 路径规划python
时间: 2023-10-23 21:09:35 浏览: 368
DQN路径规划是一种基于深度强化学习的路径规划方法,它使用神经网络来学习路径规划策略。在这种方法中,智能体通过与环境交互来学习最优路径规划策略。DQN路径规划的优点是可以处理高维状态空间和连续动作空间,同时可以在未知环境中进行路径规划。在Python中,可以使用TensorFlow等深度学习框架来实现DQN路径规划算法。
相关问题
dqn路径规划 python
DQN(Deep Q-Network)是一种深度强化学习算法,可以用于路径规划问题。在Python中,你可以使用一些开源的深度强化学习库来实现DQN算法,如TensorFlow或PyTorch。
下面是一个使用PyTorch实现DQN路径规划的简单示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义Q网络
class QNetwork(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(QNetwork, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义经验回放缓冲区
class ReplayBuffer():
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
def push(self, transition):
if len(self.buffer) >= self.capacity:
self.buffer.pop(0)
self.buffer.append(transition)
def sample(self, batch_size):
indices = np.random.choice(len(self.buffer), batch_size, replace=False)
states, actions, rewards, next_states, dones = zip(*[self.buffer[i] for i in indices])
return np.array(states), np.array(actions), np.array(rewards), np.array(next_states), np.array(dones)
# 定义DQN Agent
class DQNAgent():
def __init__(self, input_dim, hidden_dim, output_dim, lr, capacity, batch_size, gamma):
self.q_network = QNetwork(input_dim, hidden_dim, output_dim)
self.target_network = QNetwork(input_dim, hidden_dim, output_dim)
self.target_network.load_state_dict(self.q_network.state_dict())
self.optimizer = optim.Adam(self.q_network.parameters(), lr=lr)
self.replay_buffer = ReplayBuffer(capacity)
self.batch_size = batch_size
self.gamma = gamma
def select_action(self, state, epsilon):
if np.random.uniform() < epsilon:
return np.random.choice(self.q_network.out_features)
else:
with torch.no_grad():
q_values = self.q_network(torch.tensor(state, dtype=torch.float32))
return torch.argmax(q_values).item()
def train(self):
states, actions, rewards, next_states, dones = self.replay_buffer.sample(self.batch_size)
q_values = self.q_network(torch.tensor(states, dtype=torch.float32))
next_q_values = self.target_network(torch.tensor(next_states, dtype=torch.float32)).detach()
targets = rewards + self.gamma * torch.max(next_q_values, dim=1)[0] * (1 - dones)
loss = nn.MSELoss()(q_values.gather(1, torch.tensor(actions[:, None])) , targets.unsqueeze(1))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_network(self):
self.target_network.load_state_dict(self.q_network.state_dict())
# 创建DQN Agent并训练
input_dim = ... # 输入维度
hidden_dim = ... # 隐层维度
output_dim = ... # 输出维度
lr = ... # 学习率
capacity = ... # 经验回放缓冲区容量
batch_size = ... # 批次大小
gamma = ... # 折扣因子
agent = DQNAgent(input_dim, hidden_dim, output_dim, lr, capacity, batch_size, gamma)
# 使用agent与环境交互,更新经验回放缓冲区和训练网络
# 相关问题:
dqn路径规划python代码
以下是一个使用DQN(Deep Q-Network)算法实现路径规划的Python代码,可供参考:
```python
import numpy as np
import itertools
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
# 定义DQN算法的类
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = []
self.gamma = 0.95 # 折扣因子
self.epsilon = 1.0 # 探索率
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.learning_rate = 0.001
self.model = self._build_model()
# 定义神经网络模型
def _build_model(self):
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
# 将状态/行动/下一个状态/奖励存储到记忆中去
def remember(self, state, action, next_state, reward):
self.memory.append((state, action, next_state, reward))
# 根据给定状态选择行动(通过探索/利用平衡来选择行动)
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.choice(self.action_size)
else:
return np.argmax(self.model.predict(state)[0])
# 神经网络训练
def replay(self, batch_size):
minibatch = np.random.choice(len(self.memory), batch_size, replace=False)
for state, action, next_state, reward in minibatch:
target = self.model.predict(state)
if next_state is None:
target[0][action] = reward
else:
target[0][action] = reward + self.gamma * np.max(self.model.predict(next_state)[0])
self.model.fit(state, target, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# 定义搜索空间(即迷宫)
grid = [[0, 0, 0, -1],
[0, -1, 0, 0],
[0, 0, 0, -1],
[0, -1, 0, 0],
[0, 0, -1, 0]]
# 定义迷宫行列数,起点和终点位置
n_rows = len(grid)
n_cols = len(grid[0])
start = (0, 0)
end = (4, 3)
n_states = n_rows * n_cols
# 将状态编号从0到n_states-1
state2id = dict(zip(itertools.product(range(n_rows), range(n_cols)), range(n_states)))
id2state = {v: k for k, v in state2id.items()}
# 定义DQN算法的参数
batch_size = 32
n_episodes = 2000
n_steps = 100
agent = DQNAgent(2, 4)
# 开始DQN算法
for episode in range(n_episodes):
state = np.array([start[0], start[1]]).reshape(1, 2)
for step in range(n_steps):
action = agent.act(state)
n_state = None
reward = 0
if action == 0: # 上
if state[0][0] > 0 and grid[state[0][0]-1][state[0][1]] != -1:
n_state = np.array([state[0][0]-1, state[0][1]]).reshape(1, 2)
elif action == 1: # 下
if state[0][0] < n_rows-1 and grid[state[0][0]+1][state[0][1]] != -1:
n_state = np.array([state[0][0]+1, state[0][1]]).reshape(1, 2)
elif action == 2: # 左
if state[0][1] > 0 and grid[state[0][0]][state[0][1]-1] != -1:
n_state = np.array([state[0][0], state[0][1]-1]).reshape(1, 2)
else: # 右
if state[0][1] < n_cols-1 and grid[state[0][0]][state[0][1]+1] != -1:
n_state = np.array([state[0][0], state[0][1]+1]).reshape(1, 2)
if n_state is None:
reward = -1
elif n_state[0][0] == end[0] and n_state[0][1] == end[1]:
reward = 1
else:
reward = 0
agent.remember(state, action, n_state, reward)
state = n_state
if reward != 0:
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
```
该代码实现了一个简单的5x4迷宫路径规划问题,其中-1表示障碍物。DQN算法对于该问题进行了训练,以实现从起点到终点的路径导航。
阅读全文