写一个基于Python的DQN路径规划
时间: 2024-02-11 07:08:33 浏览: 244
好的,以下是一个基于Python的DQN路径规划的程序示例:
```python
import random
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Flatten
from keras.optimizers import Adam
# 定义状态空间
states = [(i, j, k) for i in range(10) for j in range(10) for k in range(4)]
num_states = len(states)
# 定义动作空间
actions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
num_actions = len(actions)
# 定义奖励函数
def reward_func(state, action):
x, y, z = state
dx, dy = action
next_x, next_y = x + dx, y + dy
if next_x < 0 or next_x >= 10 or next_y < 0 or next_y >= 10:
return -1 # 撞到边界,给予负奖励
if next_x == 7 and next_y == 7 and z == 3:
return 1 # 到达目标位置,给予正奖励
if next_x == 5 and next_y == 5 and z == 2:
return 0.5 # 经过特定位置,给予部分奖励
return 0 # 其他情况,给予零奖励
# 定义DQN模型
def build_model():
model = Sequential()
model.add(Dense(64, input_dim=num_states, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(num_actions, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=0.001))
return model
# 定义经验回放缓冲区
class ReplayBuffer:
def __init__(self, buffer_size):
self.buffer_size = buffer_size
self.buffer = []
def add(self, experience):
if len(self.buffer) + len(experience) >= self.buffer_size:
self.buffer[0:(len(experience) + len(self.buffer)) - self.buffer_size] = []
self.buffer.extend(experience)
def sample(self, size):
return np.reshape(np.array(random.sample(self.buffer, size)), [size, 5])
# 定义DQN智能体
class DQNAgent:
def __init__(self):
self.model = build_model()
self.target_model = build_model()
self.buffer = ReplayBuffer(50000)
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.batch_size = 64
self.update_target_model()
def update_target_model(self):
self.target_model.set_weights(self.model.get_weights())
def choose_action(self, state):
if np.random.rand() <= self.epsilon:
return np.random.randint(num_actions)
act_values = self.model.predict(np.reshape(state, [1, num_states]))
return np.argmax(act_values[0])
def learn(self):
if len(self.buffer.buffer) < self.batch_size:
return
minibatch = self.buffer.sample(self.batch_size)
states = np.array([i[0] for i in minibatch])
actions = np.array([i[1] for i in minibatch])
rewards = np.array([i[2] for i in minibatch])
next_states = np.array([i[3] for i in minibatch])
dones = np.array([i[4] for i in minibatch])
targets = self.model.predict(states)
q_next = self.target_model.predict(next_states)
targets[range(self.batch_size), actions] = rewards + self.gamma * np.max(q_next, axis=1) * (1 - dones)
self.model.fit(states, targets, epochs=1, verbose=0)
def decay_epsilon(self):
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# 初始化智能体
agent = DQNAgent()
num_episodes = 5000
# 训练模型
for episode in range(num_episodes):
state = (0, 0, 0)
total_reward = 0
while True:
# 选择动作
action = agent.choose_action(state)
# 更新状态并计算奖励
next_state = (state[0] + actions[action][0], state[1] + actions[action][1], (state[2] + 1) % 4)
reward = reward_func(state, actions[action])
agent.buffer.add([(state, action, reward, next_state, False)])
total_reward += reward
# 学习
agent.learn()
# 更新状态
state = next_state
if state == (7, 7, 3):
agent.buffer.add([(state, 0, 0, None, True)])
break
# 打印结果
print("第{}轮训练的总奖励为:{}".format(episode + 1, total_reward))
# 更新目标模型和epsilon
agent.update_target_model()
agent.decay_epsilon()
# 测试模型
state = (0, 0, 0)
path = [(0, 0)]
while state != (7, 7, 3):
action = np.argmax(agent.model.predict(np.reshape(state, [1, num_states]))[0])
next_state = (state[0] + actions[action][0], state[1] + actions[action][1], (state[2] + 1) % 4)
path.append((next_state[0], next_state[1]))
state = next_state
# 输出结果
print("最短路径为:", path)
```
这个程序使用DQN算法来实现三维路径规划,在训练结束后,输出从起点到达目标点的最短路径。在实践中,需要根据具体应用场景进行选择和调整。可以使用Python中的Keras和numpy等库来实现DQN算法。
阅读全文