dqn路径规划 python
时间: 2023-10-22 21:10:44 浏览: 281
基于无人机的边缘数据处理模拟 Dqn 路径规划附python代码.zip
DQN(Deep Q-Network)是一种深度强化学习算法,可以用于路径规划问题。在Python中,你可以使用一些开源的深度强化学习库来实现DQN算法,如TensorFlow或PyTorch。
下面是一个使用PyTorch实现DQN路径规划的简单示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义Q网络
class QNetwork(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(QNetwork, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义经验回放缓冲区
class ReplayBuffer():
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
def push(self, transition):
if len(self.buffer) >= self.capacity:
self.buffer.pop(0)
self.buffer.append(transition)
def sample(self, batch_size):
indices = np.random.choice(len(self.buffer), batch_size, replace=False)
states, actions, rewards, next_states, dones = zip(*[self.buffer[i] for i in indices])
return np.array(states), np.array(actions), np.array(rewards), np.array(next_states), np.array(dones)
# 定义DQN Agent
class DQNAgent():
def __init__(self, input_dim, hidden_dim, output_dim, lr, capacity, batch_size, gamma):
self.q_network = QNetwork(input_dim, hidden_dim, output_dim)
self.target_network = QNetwork(input_dim, hidden_dim, output_dim)
self.target_network.load_state_dict(self.q_network.state_dict())
self.optimizer = optim.Adam(self.q_network.parameters(), lr=lr)
self.replay_buffer = ReplayBuffer(capacity)
self.batch_size = batch_size
self.gamma = gamma
def select_action(self, state, epsilon):
if np.random.uniform() < epsilon:
return np.random.choice(self.q_network.out_features)
else:
with torch.no_grad():
q_values = self.q_network(torch.tensor(state, dtype=torch.float32))
return torch.argmax(q_values).item()
def train(self):
states, actions, rewards, next_states, dones = self.replay_buffer.sample(self.batch_size)
q_values = self.q_network(torch.tensor(states, dtype=torch.float32))
next_q_values = self.target_network(torch.tensor(next_states, dtype=torch.float32)).detach()
targets = rewards + self.gamma * torch.max(next_q_values, dim=1)[0] * (1 - dones)
loss = nn.MSELoss()(q_values.gather(1, torch.tensor(actions[:, None])) , targets.unsqueeze(1))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_network(self):
self.target_network.load_state_dict(self.q_network.state_dict())
# 创建DQN Agent并训练
input_dim = ... # 输入维度
hidden_dim = ... # 隐层维度
output_dim = ... # 输出维度
lr = ... # 学习率
capacity = ... # 经验回放缓冲区容量
batch_size = ... # 批次大小
gamma = ... # 折扣因子
agent = DQNAgent(input_dim, hidden_dim, output_dim, lr, capacity, batch_size, gamma)
# 使用agent与环境交互,更新经验回放缓冲区和训练网络
# 相关问题:
阅读全文