dqn 路径规划 pytorch
时间: 2023-11-03 08:05:26 浏览: 138
您可以参考以下步骤来实现 DQN 路径规划:
1. 定义状态空间和动作空间,例如,状态空间可以是地图上的位置,动作空间可以是向上、向下、向左、向右等。
2. 构建神经网络模型,用于估计每个动作的 Q 值。
3. 初始化经验回放缓存区,用于存储智能体的经验。
4. 在每个时间步中,根据当前状态选择一个动作,并执行该动作。同时,将当前状态、动作、奖励、下一个状态存储到经验回放缓存区中。
5. 从经验回放缓存区中随机采样一批经验,用于训练神经网络模型。
6. 更新神经网络模型的参数,使其能够更好地预测每个动作的 Q 值。
7. 重复步骤 4-6,直到达到预定的训练次数或者智能体已经学会了最优策略。
关于 DQN 路径规划的 PyTorch 实现,您可以参考以下代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class DQN(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):
super(DQN, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = np.random.choice(self.buffer, batch_size, replace=False)
state, action, reward, next_state = zip(*batch)
return state, action, reward, next_state
def __len__(self):
return len(self.buffer)
def train(model, optimizer, replay_buffer, batch_size, gamma):
if len(replay_buffer) < batch_size:
return
state, action, reward, next_state = replay_buffer.sample(batch_size)
state = torch.FloatTensor(state)
action = torch.LongTensor(action)
reward = torch.FloatTensor(reward)
next_state = torch.FloatTensor(next_state)
q_values = model(state)
next_q_values = model(next_state).detach()
max_next_q_values = torch.max(next_q_values, dim=1)[0]
target_q_values = reward + gamma * max_next_q_values
loss = nn.functional.mse_loss(q_values.gather(1, action.unsqueeze(1)), target_q_values.unsqueeze(1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
def select_action(model, state, eps):
if np.random.rand() < eps:
return np.random.randint(model.fc3.out_features)
else:
state = torch.FloatTensor(state)
q_values = model(state)
return torch.argmax(q_values).item()
def dqn_path_planning(env, model, optimizer, replay_buffer, batch_size, gamma, eps_start, eps_end, eps_decay, num_episodes):
eps = eps_start
for i in range(num_episodes):
state = env.reset()
done = False
total_reward = 0
while not done:
action = select_action(model, state, eps)
next_state, reward, done, _ = env.step(action)
replay_buffer.push(state, action, reward, next_state)
train(model, optimizer, replay_buffer, batch_size, gamma)
state = next_state
total_reward += reward
eps = max(eps_end, eps_decay * eps)
print("Episode {}: Total Reward = {}".format(i + 1, total_reward))
# 定义环境
env = ...
# 定义超参数
state_dim = ...
action_dim = ...
hidden_dim = ...
capacity = ...
batch_size = ...
gamma = ...
eps_start = ...
eps_end = ...
eps_decay = ...
num_episodes = ...
# 初始化神经网络模型、优化器和经验回放缓存区
model = DQN(state_dim, action_dim, hidden_dim)
optimizer = optim.Adam(model.parameters())
replay_buffer = ReplayBuffer(capacity)
# 训练神经网络模型
dqn_path_planning(env, model, optimizer, replay_buffer, batch_size, gamma, eps_start, eps_end, eps_decay, num_episodes)
```
阅读全文