%Matlab程序读取sst数据: close all clear all oid='sst.mnmean.nc' sst=double(ncread(oid,'sst')); nlat=double(ncread(oid,'lat')); nlon=double(ncread(oid,'lon')); mv=ncreadatt(oid,'/sst','missing_value'); sst(find(sst==mv))=NaN; [Nlt,Nlg]=meshgrid(nlat,nlon); %Plot the SST data without using the MATLAB Mapping Toolbox figure pcolor(Nlg,Nlt,sst(:,:,1));shading interp; load coast;hold on;plot(long,lat);plot(long+360,lat);hold off colorbar %Plot the SST data using the MATLAB Mapping Toolbox figure axesm('eqdcylin','maplatlimit',[-80 80],'maplonlimit',[0 360]); % Create a cylindrical equidistant map pcolorm(Nlt,Nlg,sst(:,:,1)) % pseudocolor plot "stretched" to the grid load coast % add continental outlines plotm(lat,long) colorbar % sst数据格式 % Variables: % lat % Size: 89x1 % Dimensions: lat % Datatype: single % Attributes: % units = 'degrees_north' % long_name = 'Latitude' % actual_range = [88 -88] % standard_name = 'latitude_north' % axis = 'y' % coordinate_defines = 'center' % % lon % Size: 180x1 % Dimensions: lon % Datatype: single % Attributes: % units = 'degrees_east' % long_name = 'Longitude' % actual_range = [0 358] % standard_name = 'longitude_east' % axis = 'x' % coordinate_defines = 'center' % % time % Size: 1787x1 % Dimensions: time % Datatype: double % Attributes: % units = 'days since 1800-1-1 00:00:00' % long_name = 'Time' % actual_range = [19723 74083] % delta_t = '0000-01-00 00:00:00' % avg_period = '0000-01-00 00:00:00' % prev_avg_period = '0000-00-07 00:00:00' % standard_name = 'time' % axis = 't' % % time_bnds % Size: 2x1787 % Dimensions: nbnds,time % Datatype: double % Attributes: % long_name = 'Time Boundaries' % % sst % Size: 180x89x1787 % Dimensions: lon,lat,time % Datatype: int16 % Attributes: % long_name = 'Monthly Means of Sea Surface Temperature' % valid_range = [-5 40] % actual_range = [-1.8 36.08] % units = 'degC' % add_offset = 0 % scale_factor = 0.01 % missing_value = 32767 % precision = 2 % least_significant_digit = 1 % var_desc = 'Sea Surface Temperature' % dataset = 'NOAA Extended Reconstructed SST' % level_desc = 'Surface' % statistic = 'Mean' % parent_stat = 'Mean' 解释这个代码的意思,并将其转换为python代码
时间: 2024-04-10 16:28:11 浏览: 105
这段Matlab代码的功能是读取一个名为'sst.mnmean.nc'的NetCDF文件中的数据,并进行可视化。以下是对代码的解释和相应的Python代码转换:
```python
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from netCDF4 import Dataset
# 读取NetCDF文件
oid = 'sst.mnmean.nc'
dataset = Dataset(oid)
# 读取sst数据
sst = dataset.variables['sst'][:]
mv = dataset.variables['sst'].missing_value
sst[sst == mv] = np.nan
# 读取经纬度数据
nlat = dataset.variables['lat'][:]
nlon = dataset.variables['lon'][:]
# 绘制SST数据(不使用Matplotlib的Mapping Toolbox)
plt.figure()
plt.pcolormesh(nlon, nlat, sst[:,:,0], shading='interp')
plt.colorbar()
plt.contour(dataset.variables['lon'][:]+360, dataset.variables['lat'][:], dataset.variables['sst'][0,:,:], colors='k')
plt.show()
# 绘制SST数据(使用Matplotlib的Mapping Toolbox)
plt.figure()
map = Basemap(projection='cyl', llcrnrlat=-80, urcrnrlat=80, llcrnrlon=0, urcrnrlon=360)
map.pcolormesh(nlon, nlat, sst[:,:,0], latlon=True)
map.drawcoastlines()
plt.colorbar()
plt.show()
# 关闭文件
dataset.close()
```
注意:在Python中,我们使用了NumPy库来处理数组,Matplotlib进行绘图,并使用Basemap来绘制地图。此外,我们使用了netCDF4库来读取NetCDF文件的数据。请确保在运行代码之前安装了相关的Python库。
阅读全文