def forward(self, inputs): outputs_f = None outputs_b = None
时间: 2024-05-23 21:11:29 浏览: 119
这是一个神经网络模型中的前向传播函数的代码片段。inputs是模型的输入,而outputs_f和outputs_b是分别表示前向传播和后向传播的输出,通常这两个输出会在模型的训练过程中被用到。在这个代码片段中,outputs_f和outputs_b的初始值都被设置为None,这意味着它们在函数内部的计算中会被重新赋值。
相关问题
def forward(self, input_data, attention_mask=None, labels=None, position_ids=None, inputs_embeds=None, head_mask=None): outputs = self.bert(input_data, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds) sequence_output = outputs[0] # 去除cls,(batch,seq) sequence_output = sequence_output[:, 1:] sequence_output = self.dropout(sequence_output) # 得到判别值 logits = self.classifier(sequence_output) outputs = (logits,) if labels is not None: loss_mask = labels.gt(-1) loss = self.crf(logits, labels, loss_mask) * (-1) outputs = (loss,) + outputs # contain: (loss), scores return outputs
这是BertNER模型的前向传播函数,输入参数包括input_data,attention_mask,labels,position_ids,inputs_embeds,head_mask。其中,input_data是输入的文本数据,attention_mask是掩码,用于指示哪些词是padding,labels是标注序列,position_ids是位置编码,inputs_embeds是词嵌入向量,head_mask是多头注意力层的掩码。
在函数中,首先将输入数据input_data输入到BERT模型中,得到输出outputs,其中outputs[0]表示BERT模型的输出特征。接着,去掉输出特征中的[CLS]标记,并通过dropout层进行随机失活。然后,将输出特征输入到线性分类器中,得到每个位置上的标记得分,即预测值。如果labels不为空,则计算损失值,并将损失值添加到输出outputs中。最后,返回输出outputs。
def calc_gradient_penalty(self, netD, real_data, fake_data): alpha = torch.rand(1, 1) alpha = alpha.expand(real_data.size()) alpha = alpha.cuda() interpolates = alpha * real_data + ((1 - alpha) * fake_data) interpolates = interpolates.cuda() interpolates = Variable(interpolates, requires_grad=True) disc_interpolates, s = netD.forward(interpolates) s = torch.autograd.Variable(torch.tensor(0.0), requires_grad=True).cuda() gradients1 = autograd.grad(outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones(disc_interpolates.size()).cuda(), create_graph=True, retain_graph=True, only_inputs=True, allow_unused=True)[0] gradients2 = autograd.grad(outputs=s, inputs=interpolates, grad_outputs=torch.ones(s.size()).cuda(), create_graph=True, retain_graph=True, only_inputs=True, allow_unused=True)[0] if gradients2 is None: return None gradient_penalty = (((gradients1.norm(2, dim=1) - 1) ** 2).mean() * self.LAMBDA) + \ (((gradients2.norm(2, dim=1) - 1) ** 2).mean() * self.LAMBDA) return gradient_penalty def get_loss(self, net,fakeB, realB): self.D_fake, x = net.forward(fakeB.detach()) self.D_fake = self.D_fake.mean() self.D_fake = (self.D_fake + x).mean() # Real self.D_real, x = net.forward(realB) self.D_real = (self.D_real+x).mean() # Combined loss self.loss_D = self.D_fake - self.D_real gradient_penalty = self.calc_gradient_penalty(net, realB.data, fakeB.data) return self.loss_D + gradient_penalty,return self.loss_D + gradient_penalty出现错误:TypeError: unsupported operand type(s) for +: 'Tensor' and 'NoneType'
这个错误是因为在 calc_gradient_penalty 函数中,如果 gradients2 是 None,则会返回 None。在 get_loss 函数中,如果 gradient_penalty 是 None,则返回的就是 self.loss_D + None,这导致了 TypeError 错误。
为了解决这个问题,你可以在 calc_gradient_penalty 函数中添加一个条件判断,如果 gradients2 是 None,则返回 0.0,而不是 None。这样,当计算 gradient_penalty 时,即使 gradients2 是 None,也不会导致错误。修改后的代码如下:
```
def calc_gradient_penalty(self, netD, real_data, fake_data):
alpha = torch.rand(1, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.cuda()
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
interpolates = interpolates.cuda()
interpolates = Variable(interpolates, requires_grad=True)
disc_interpolates, s = netD.forward(interpolates)
s = torch.autograd.Variable(torch.tensor(0.0), requires_grad=True).cuda()
gradients1 = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda(),
create_graph=True, retain_graph=True, only_inputs=True, allow_unused=True)[0]
gradients2 = autograd.grad(outputs=s, inputs=interpolates,
grad_outputs=torch.ones(s.size()).cuda(),
create_graph=True, retain_graph=True,
only_inputs=True, allow_unused=True)[0]
if gradients2 is None:
return 0.0
gradient_penalty = (((gradients1.norm(2, dim=1) - 1) ** 2).mean() * self.LAMBDA) + \
(((gradients2.norm(2, dim=1) - 1) ** 2).mean() * self.LAMBDA)
return gradient_penalty
def get_loss(self, net,fakeB, realB):
self.D_fake, x = net.forward(fakeB.detach())
self.D_fake = self.D_fake.mean()
self.D_fake = (self.D_fake + x).mean()
# Real
self.D_real, x = net.forward(realB)
self.D_real = (self.D_real+x).mean()
# Combined loss
self.loss_D = self.D_fake - self.D_real
gradient_penalty = self.calc_gradient_penalty(net, realB.data, fakeB.data)
if gradient_penalty == None:
gradient_penalty = 0.0
return self.loss_D + gradient_penalty
```
阅读全文