def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) # print(x.size()) x = x.view(x.shape[0], -1) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.out(x) x = F.log_softmax(x, dim=1) return x

时间: 2023-09-09 11:13:57 浏览: 134
这段代码是一个 PyTorch 模型的前向传播函数,对输入数据进行一系列卷积、激活、全连接等操作,最后输出一个经过 log_softmax 处理的概率分布向量。这个模型的具体结构是由若干个卷积层、全连接层以及激活函数组成。其中 view() 函数将卷积层的输出展平成一个一维向量,然后经过两个全连接层和激活函数后输出。最后使用 log_softmax 转换成概率分布向量。
相关问题

帮我分析以下代码:class PConv(nn.Module): def __init__(self, dim, ouc, n_div=4, forward='split_cat'): super().__init__() self.dim_conv3 = dim // n_div self.dim_untouched = dim - self.dim_conv3 self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) self.conv = Conv(dim, ouc, k=1) if forward == 'slicing': self.forward = self.forward_slicing elif forward == 'split_cat': self.forward = self.forward_split_cat else: raise NotImplementedError def forward_slicing(self, x): # only for inference x = x.clone() # !!! Keep the original input intact for the residual connection later x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) x = self.conv(x) return x def forward_split_cat(self, x): # for training/inference x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1) x1 = self.partial_conv3(x1) x = torch.cat((x1, x2), 1) x = self.conv(x) return x

这段代码定义了一个名为 PConv 的类,该类继承自 nn.Module 类。该类的初始化函数接受三个参数:dim,ouc 和 n_div。其中,dim 表示输入特征图的通道数,ouc 表示输出特征图的通道数,n_div 表示将输入特征图的通道数分成几个部分。 在初始化函数中,首先计算了一个值 dim_conv3,表示将输入特征图的通道数分成的那一部分的通道数。然后,定义了一个 nn.Conv2d 类型的卷积层 partial_conv3,该层的输入通道数和输出通道数都是 dim_conv3,卷积核大小为 3,步长为 1,填充为 1,不使用偏置。接着,定义了一个 Conv 类型的卷积层 conv,该层的输入通道数为 dim,输出通道数为 ouc,卷积核大小为 1。 接下来,根据指定的 forward 参数值选择不同的前向传播函数。如果 forward 等于 'slicing',则使用 forward_slicing 函数;如果 forward 等于 'split_cat',则使用 forward_split_cat 函数;否则抛出 NotImplementedError 异常。 forward_slicing 函数接收一个输入张量 x,首先通过 x.clone() 将输入张量的副本保存下来,以便后面的残差连接使用。然后,将输入张量的前 dim_conv3 个通道切片出来,输入到 partial_conv3 卷积层中,得到一个输出张量,再将输出张量和输入张量的后面部分进行拼接,得到最终的输出张量。 forward_split_cat 函数也接收一个输入张量 x,首先通过 torch.split() 将输入张量分成两个部分,其中第一个部分包含前 dim_conv3 个通道,第二个部分包含剩下的通道。然后,将第一个部分输入到 partial_conv3 卷积层中,得到一个输出张量,再将输出张量和第二个部分进行拼接,得到最终的输出张量。 该类的主要作用是实现了一个部分卷积层,用于图像修复任务。这个部分卷积层可以在一定程度上保留图像的边缘信息,同时去除遮挡区域的噪声。

class Partial_conv3(nn.Module): def init(self, dim, n_div, forward): super().init() self.dim_conv3 = dim // n_div self.dim_untouched = dim - self.dim_conv3 self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) self.global_pool = GlobalAvgPool2d() if forward == 'slicing': self.forward = self.forward_slicing elif forward == 'split_cat': self.forward = self.forward_split_cat else: raise NotImplementedError def forward_slicing(self, x: Tensor) -> Tensor: # only for inference x = x.clone() # !!! Keep the original input intact for the residual connection later x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) return x def forward_split_cat(self, x: Tensor) -> Tensor: x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1) x1 = self.global_pool(x1) x1 = self.partial_conv3(x1) x = torch.cat((x1, x2), 1) return x这段代码有什么错误

这段代码并没有明显的语法错误,但是存在一些潜在的问题和需要改进的地方: 1. 类名应该以大写字母开头,应该将 `Partial_conv3` 改为 `PartialConv3`。 2. `super().init()` 应该改为 `super().__init__()`。 3. `self.forward` 方法应该在 `init` 方法中定义,在 `init` 中加入 `self.forward = None`。 4. `forward_split_cat` 方法中,应该先使用 `self.partial_conv3` 对 `x1` 进行卷积操作,再将 `x1` 和 `x2` 进行拼接,即应该将 `x1 = self.partial_conv3(x1)` 放在 `torch.cat((x1, x2), 1)` 之前。 5. `dim` 应该改为 `in_channels`,以更加清晰地表示输入张量的通道数。 6. `forward` 方法的输入参数应该改为 `inputs`,以更加符合命名规范。 以下是修改后的代码: ``` class PartialConv3(nn.Module): def __init__(self, in_channels, n_div, forward): super().__init__() self.dim_conv3 = in_channels // n_div self.dim_untouched = in_channels - self.dim_conv3 self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) self.global_pool = GlobalAvgPool2d() self.forward = None if forward == 'slicing': self.forward = self.forward_slicing elif forward == 'split_cat': self.forward = self.forward_split_cat else: raise NotImplementedError def forward_slicing(self, inputs: Tensor) -> Tensor: # only for inference x = inputs.clone() # !!! Keep the original input intact for the residual connection later x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) return x def forward_split_cat(self, inputs: Tensor) -> Tensor: x1, x2 = torch.split(inputs, [self.dim_conv3, self.dim_untouched], dim=1) x1 = self.partial_conv3(x1) x1 = self.global_pool(x1) x = torch.cat((x1, x2), 1) return x ```
阅读全文

相关推荐

请详细解析一下python代码: import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 128, 5, padding=2) self.conv2 = nn.Conv2d(128, 128, 5, padding=2) self.conv3 = nn.Conv2d(128, 256, 3, padding=1) self.conv4 = nn.Conv2d(256, 256, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.bn_conv1 = nn.BatchNorm2d(128) self.bn_conv2 = nn.BatchNorm2d(128) self.bn_conv3 = nn.BatchNorm2d(256) self.bn_conv4 = nn.BatchNorm2d(256) self.bn_dense1 = nn.BatchNorm1d(1024) self.bn_dense2 = nn.BatchNorm1d(512) self.dropout_conv = nn.Dropout2d(p=0.25) self.dropout = nn.Dropout(p=0.5) self.fc1 = nn.Linear(256 * 8 * 8, 1024) self.fc2 = nn.Linear(1024, 512) self.fc3 = nn.Linear(512, 10) def conv_layers(self, x): out = F.relu(self.bn_conv1(self.conv1(x))) out = F.relu(self.bn_conv2(self.conv2(out))) out = self.pool(out) out = self.dropout_conv(out) out = F.relu(self.bn_conv3(self.conv3(out))) out = F.relu(self.bn_conv4(self.conv4(out))) out = self.pool(out) out = self.dropout_conv(out) return out def dense_layers(self, x): out = F.relu(self.bn_dense1(self.fc1(x))) out = self.dropout(out) out = F.relu(self.bn_dense2(self.fc2(out))) out = self.dropout(out) out = self.fc3(out) return out def forward(self, x): out = self.conv_layers(x) out = out.view(-1, 256 * 8 * 8) out = self.dense_layers(out) return out net = Net() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print('Device:', device) net.to(device) num_params = sum(p.numel() for p in net.parameters() if p.requires_grad) print("Number of trainable parameters:", num_params)

更改import torch import torchvision.models as models import torch.nn as nn import torch.nn.functional as F class eca_Resnet50(nn.Module): def init(self): super().init() self.model = models.resnet50(pretrained=True) self.model.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.model.fc = nn.Linear(2048, 1000) self.eca = ECA_Module(2048, 8) def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.eca(x) x = self.model.avgpool(x) x = torch.flatten(x, 1) x = self.model.fc(x) return x class ECA_Module(nn.Module): def init(self, channel, k_size=3): super(ECA_Module, self).init() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) class ImageDenoising(nn.Module): def init(self): super().init() self.model = eca_Resnet50() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x,使最后输出为[16,1,50,50,]。

更改import torch import torchvision.models as models import torch.nn as nn import torch.nn.functional as F class eca_Resnet50(nn.Module): def __init__(self): super().__init__() self.model = models.resnet50(pretrained=True) self.model.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.model.fc = nn.Linear(2048, 1000) self.eca = ECA_Module(2048, 8) def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.eca(x) x = self.model.avgpool(x) x = torch.flatten(x, 1) x = self.model.fc(x) return x class ECA_Module(nn.Module): def __init__(self, channel, k_size=3): super(ECA_Module, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) class ImageDenoising(nn.Module): def __init__(self): super().__init__() self.model = eca_Resnet50() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x输出为[16,1,50,50]

最新推荐

recommend-type

vb人事管理系统全套(源代码+论文+开题报告+实习报告)(2024zq).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

vb试题库自动组卷系统(源代码+论文)(2024nc).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决
recommend-type

Linux C开发中,如何判断open()函数创建的fd没有被close()

在Linux C开发中,判断`open()`函数创建的文件描述符(file descriptor, fd)是否已经被`close()`通常涉及到检查该fd是否处于有效的状态。你可以通过以下几个步骤进行: 1. **检查fd是否为-1**:如果fd值为-1,这通常表示错误发生或者文件操作已经完成,它可能已经被关闭。 ```c if (fd == -1) { // 处理失败或已关闭的情况 } ``` 2. **检查errno**:系统调用返回-1并设置errno时,可以查阅相关的错误码来判断问题。比如,`ENOTTY`可能表示尝试访问非块设备,而这可能是由`close()`造成的。