def forward(self, x): x = self.pool1(torch.sigmoid(self.conv1(x))) x = self.pool2(torch.sigmoid(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.sigmoid(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) x = self.fc3(x) return xdef forward(self, x): x = self.pool1(torch.sigmoid(self.conv1(x))) x = self.pool2(torch.sigmoid(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.sigmoid(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) x = self.fc3(x) return xdef forward(self, x): x = self.pool1(torch.sigmoid(self.conv1(x))) x = self.pool2(torch.sigmoid(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.sigmoid(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) x = self.fc3(x) return xdef forward(self, x): x = self.pool1(torch.sigmoid(self.conv1(x))) x = self.pool2(torch.sigmoid(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.sigmoid(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) x = self.fc3(x) return x
时间: 2023-06-20 07:04:30 浏览: 244
pytorch forward两个参数实例
这是一个神经网络的前向传播函数,通常用于对输入数据进行预测或分类。该网络包括两个卷积层和三个全连接层,并使用了sigmoid激活函数和池化操作。具体来说,输入数据x经过conv1和pool1后,再经过conv2和pool2,最后通过多层全连接层生成输出。在全连接层中使用sigmoid激活函数,最后一层没有激活函数。
阅读全文