admm算法matlab代码
时间: 2023-07-16 08:16:07 浏览: 195
以下是ADMM算法的Matlab代码示例:
```
function [x, history] = admm(A, b, rho, alpha)
% ADMM solver for the following problem:
%
% minimize || Ax - b ||_2^2 + alpha || x ||_1
%
% The input parameters are:
% A - a matrix
% b - a vector
% rho - the penalty parameter
% alpha - the regularization parameter
%
% The output values are:
% x - the solution of the problem
% history - a struct containing the objective value and other information
[m, n] = size(A);
% ADMM solver
x = zeros(n, 1);
z = zeros(n, 1);
u = zeros(n, 1);
% Precompute
L = chol(2 * rho * (A' * A) + eye(n), 'lower');
% Start ADMM iterations
MAX_ITER = 1000;
ABSTOL = 1e-4;
RELTOL = 1e-2;
for iter = 1:MAX_ITER
% x-update
q = A' * b + rho * (z - u); % temporary value
x = L \ (L' \ q);
% z-update with relaxation
zold = z;
x_hat = alpha / rho * x + (1 - alpha / rho) * zold;
z = shrinkage(x_hat + u, 1 / rho);
% u-update
u = u + (x_hat - z);
% diagnostics, reporting, termination checks
history.objval(iter) = objective(A, b, alpha, x, z);
history.r_norm(iter) = norm(x - z);
history.s_norm(iter) = norm(-rho * (z - zold));
history.eps_pri(iter) = sqrt(n) * ABSTOL + RELTOL * max(norm(x), norm(-z));
history.eps_dual(iter) = sqrt(n) * ABSTOL + RELTOL * norm(rho * u);
if (history.r_norm(iter) < history.eps_pri(iter) && ...
history.s_norm(iter) < history.eps_dual(iter))
break;
end
end
end
function obj = objective(A, b, alpha, x, z)
obj = norm(A * x - b)^2 / 2 + alpha * norm(z, 1);
end
function y = shrinkage(x, kappa)
y = max(0, x - kappa) - max(0, -x - kappa);
end
```
此代码实现了ADMM求解以下问题:
$$\min_{x}\frac{1}{2}\|Ax-b\|_2^2+\alpha\|x\|_1$$
其中,$A$是一个$m\times n$的矩阵,$b$是一个$m$维向量,$\alpha$是正则化参数,$x$是一个$n$维向量。
阅读全文