model = tf.keras.models.Sequential([ Conv2D(filters=6, kernel_size=(5, 5), padding='same', input_shape=(28, 28, 1)), BatchNormalization(), Activation('relu'), MaxPool2D(pool_size=(2, 2), strides=2, padding='same'), Flatten(), Dense(64, activation='relu'), Dense(10, activation='softmax') ])
时间: 2023-08-18 09:09:15 浏览: 150
这是一个使用 TensorFlow 的 Keras API 定义的卷积神经网络模型,用于执行手写数字识别任务。模型有两个卷积层和两个全连接层。第一个卷积层有 6 个滤波器,每个滤波器大小为 5x5,输入图像大小为 28x28x1,并使用填充使输出大小保持不变。接着进行批量归一化和 ReLU 激活,然后进行最大池化,每个池化窗口大小为 2x2,步幅为 2,并使用填充以保持输出大小不变。接下来对特征图进行展平,然后添加两个全连接层,第一个层有 64 个神经元,使用 ReLU 激活函数,第二个层有 10 个神经元,使用 softmax 激活函数,用于输出每个分类的概率分布。
相关问题
model = tf.keras.models.Sequential( [ tf.keras.layers.Conv2D(filters=32, kernel_size=(3,3), input_shape= shape, activation='relu', padding='same'), tf.keras.layers.Dropout(rate=0.2), tf.keras.layers.MaxPool2D(pool_size=(2,2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(2,activation='softmax') ] )以上代码是如何防止过拟合的
以上代码使用了两种防止过拟合的方法:
1. Dropout层:在模型训练过程中,每次更新时随机断开一定比例(rate)的输入神经元,这有助于防止过拟合。 在这个例子中,dropout rate 设置为0.2,即每次更新时断开20%的输入神经元。
2. Early stopping:在训练过程中,使用 EarlyStopping 回调函数来监测验证集上的损失值,若连续几次迭代后验证集损失值没有下降,则停止训练。这可以防止模型在训练数据上过拟合,同时也可以提高模型的泛化能力。不过这个例子中没有实现 EarlyStopping。
解释一下这段代码import pdb import tensorflow as tf from matplotlib import pyplot as plt import numpy as np import os from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dense,Dropout,Flatten,GlobalAveragePooling2D np.set_printoptions(threshold=np.inf) class ResnetBlock(Model): def __init__(self, filters, strides=1,residual_path=False): super(ResnetBlock, self).__init__() self.filters = filters self.strides = strides self.residual_path = residual_path self.c1 = Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False) self.b1 = BatchNormalization() self.a1 = Activation('relu') self.c2 = Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False) self.b2 = BatchNormalization() if residual_path: self.down_c1 = Conv2D(filters, (1, 1),strides=strides, padding='same', use_bias=False) self.down_b1 = BatchNormalization() self.a2 = Activation('relu') def call(self, inputs): residual = inputs x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.c2(x) y = self.b2(x) if self.residual_path: residual = self.down_c1(inputs) residual = self.down_b1(residual) out = self.a2(y + residual) return out class ResNet18(Model): def __init__(self, block_list, initial_filters=64): super(ResNet18, self).__init__() self.num_blocks = len(block_list) self.block_list = block_list self.out_filters = initial_filters self.c1 = Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False, kernel_initializer='he_normal') self.b1 = BatchNormalization() self.a1 = Activation('relu') self.blocks = tf.keras.models.Sequential() for block_id in range(len(block_list)): for layer_id in range(block_list[block_id]): if block_id != 0 and layer_id == 0: block = ResnetBlock(self.out_filters, strides=2, residual_path=True) else: block = ResnetBlock(self.out_filters, residual_path=False) self.blocks.add(block) self.out_filters *= 2 self.p1 = tf.keras.layers.GlobalAveragePooling2D() self.f1 = tf.keras.layers.Dense(41, activation='tanh') def call(self, inputs): x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.blocks(x) x = self.p1(x) y = self.f1(x) return y
这段代码实现了一个ResNet18的模型。ResNet是深度学习中非常著名的神经网络模型之一,它的主要贡献在于解决了深度神经网络中的梯度消失问题,使得神经网络可以更深更复杂。ResNet18是ResNet的一个较小规模的版本,包含了18个卷积层和全连接层。这个模型的输入是一张图片,输出是一个41维的向量,用于表示图片属于41个不同类别中的哪一个。
在代码中,首先定义了一个ResnetBlock类,用于组成ResNet18中的基本模块。每个ResnetBlock包含两个卷积层和一个残差连接,其中第一个卷积层的输出经过BatchNormalization和ReLU激活函数后作为第二个卷积层的输入,第二个卷积层的输出经过BatchNormalization后和残差连接相加后再经过ReLU激活函数。如果需要进行降采样,则在残差连接中添加一个卷积层。
接着定义了一个ResNet18类,它包含了一个初始的卷积层、一系列ResnetBlock和全局平均池化层、一个全连接层。在ResNet18的构建过程中,根据传入的block_list参数的不同,逐步增加ResnetBlock的数量和输出通道数。在每个ResnetBlock中,如果需要进行降采样,则会在第一个卷积层中设置strides=2,否则为1。最后,经过全局平均池化层和全连接层,输出最终的预测结果。
在调用模型时,首先将输入图片经过初始的卷积层、BatchNormalization和ReLU激活函数,再经过一系列ResnetBlock,最后进行全局平均池化和全连接层的计算,得到预测结果。
阅读全文