python实现贝叶斯优化混合核极限学习机回归预测
时间: 2023-08-01 07:09:40 浏览: 92
贝叶斯优化混合核极限学习机回归预测是一种机器学习算法,可以用Python实现。下面是一个简单的实现过程:
1. 安装必要的Python库
```
pip install numpy scipy scikit-learn matplotlib
```
2. 导入必要的库
```python
import numpy as np
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern, WhiteKernel, ConstantKernel
from sklearn.metrics import mean_squared_error
from scipy.optimize import minimize
```
3. 定义模型
```python
class BayesianOptimizationELM():
def __init__(self, kernel, alpha, n_hidden):
self.kernel = kernel
self.alpha = alpha
self.n_hidden = n_hidden
def fit(self, X, y):
self.X = X
self.y = y
self.gp = GaussianProcessRegressor(kernel=self.kernel, alpha=self.alpha)
self.gp.fit(X, y)
self.beta = self.gp.predict(X)
H = np.random.normal(size=[self.X.shape[0], self.n_hidden])
H = np.concatenate([H, np.ones([self.X.shape[0], 1])], axis=1)
self.H = H
self.W = np.dot(np.linalg.pinv(H), self.beta)
def predict(self, X):
H = np.random.normal(size=[X.shape[0], self.n_hidden])
H = np.concatenate([H, np.ones([X.shape[0], 1])], axis=1)
return np.dot(H, self.W)
```
4. 定义核函数
```python
kernel = ConstantKernel(1.0, (1e-3, 1e3)) * Matern(length_scale=2, nu=3/2) + WhiteKernel(noise_level=1, noise_level_bounds=(1e-10, 1e+1))
```
5. 定义目标函数
```python
def objective(params):
alpha, n_hidden = params
model = BayesianOptimizationELM(kernel=kernel, alpha=alpha, n_hidden=int(n_hidden))
model.fit(X_train, y_train)
y_pred = model.predict(X_val)
return mean_squared_error(y_val, y_pred)
```
6. 进行优化
```python
res = minimize(objective, [1, 10], bounds=((1e-5, 1e5), (1, 100)))
alpha, n_hidden = res.x
```
7. 使用最优的参数进行预测
```python
model = BayesianOptimizationELM(kernel=kernel, alpha=alpha, n_hidden=int(n_hidden))
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```
这样就可以用Python实现贝叶斯优化混合核极限学习机回归预测了。
阅读全文