运用牛顿二元迭代法在Matlab求解theta1和theta2,rb*cos(theta1+mu)+(p*theta1+rou*cos(lambadab)-z)/sin(lambadab)*cos(lambadab)*sin(theta1+mu)+rou*sin(lambadab)*sin(theta1+mu)==rb*cos(theta2+mu)+(p*theta2+rou*cos(lambadab)+z)/sin(lambadab)*cos(lambadab)*sin(theta2+mu)+rou*sin(lambadab)*sin(theta2+mu); rb*cos(theta1+mu)-(p*theta1+rou*cos(lambadab)-z)/sin(lambadab)*cos(lambadab)*cos(theta1+mu)-rou*sin(lambadab)*sin(theta1+mu)==-rb*sin(theta2+mu)+(p*theta2+rou*cos(lambadab)+z)/sin(lambadab)*cos(lambadab)*cos(theta2+mu)+rou*sin(lambadab)*cos(theta2+mu);
时间: 2024-02-03 20:11:51 浏览: 142
牛顿迭代法,牛顿迭代法求根,matlab
5星 · 资源好评率100%
首先,将方程转化为形式f(theta1,theta2)=0。可以定义一个函数f,其中包含两个方程:
```matlab
function F = f(X)
mu = X(1);
theta1 = X(2);
theta2 = X(3);
rb = X(4);
p = X(5);
rou = X(6);
lambadab = X(7);
z = X(8);
F(1) = rb*cos(theta1+mu)+(p*theta1+rou*cos(lambadab)-z)/sin(lambadab)*cos(lambadab)*sin(theta1+mu)+rou*sin(lambadab)*sin(theta1+mu)-rb*cos(theta2+mu)-(p*theta2+rou*cos(lambadab)+z)/sin(lambadab)*cos(lambadab)*sin(theta2+mu)-rou*sin(lambadab)*sin(theta2+mu);
F(2) = rb*cos(theta1+mu)-(p*theta1+rou*cos(lambadab)-z)/sin(lambadab)*cos(lambadab)*cos(theta1+mu)-rou*sin(lambadab)*sin(theta1+mu)+rb*sin(theta2+mu)-(p*theta2+rou*cos(lambadab)+z)/sin(lambadab)*cos(lambadab)*cos(theta2+mu)-rou*sin(lambadab)*cos(theta2+mu);
end
```
然后使用Matlab内置的函数`fsolve`进行求解。代码如下:
```matlab
mu = 0;
theta1 = 0;
theta2 = 0;
rb = 1;
p = 2;
rou = 3;
lambadab = 4;
z = 5;
X0 = [mu, theta1, theta2, rb, p, rou, lambadab, z];
options = optimoptions('fsolve','Display','iter');
X = fsolve(@f,X0,options);
```
这里将初始值设置为0,可以根据具体情况进行修改。使用`optimoptions`设置`fsolve`的选项,包括显示和迭代次数等。最终求解结果存储在向量X中。
阅读全文