帮我设计一个代码,在#导入训练集和训练集对应的标签并将其初始化 X_train,T_train=idx2numpy.convert_from_file('emnist/emnist-letters-train-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-train-labels-idx1-ubyte') X_train,T_train=X_train.copy(),T_train.copy() X_train=X_train.reshape((X_train.shape[0],-1)) T_train=T_train-1 T_train=np.eye(26)[T_train] #导入测试集和测试集对应的标签标签并将其初始化 X_test,T_test=idx2numpy.convert_from_file('emnist/emnist-letters-test-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-test-labels-idx1-ubyte') X_test,T_test=X_test.copy(),T_test.copy() X_test=X_test.reshape((X_test.shape[0],-1)) T_test=T_test-1 T_test=np.eye(26)[T_test]后用人工神经网络识别手写字母
时间: 2023-07-20 13:12:18 浏览: 110
python使用 __init__初始化操作简单示例
5星 · 资源好评率100%
好的,以下是一个简单的人工神经网络识别手写字母的代码:
```python
import numpy as np
# 导入训练集和训练集对应的标签并将其初始化
X_train, T_train = idx2numpy.convert_from_file('emnist/emnist-letters-train-images-idx3-ubyte'), idx2numpy.convert_from_file('emnist/emnist-letters-train-labels-idx1-ubyte')
X_train, T_train = X_train.copy(), T_train.copy()
X_train = X_train.reshape((X_train.shape[0], -1))
T_train = T_train - 1
T_train = np.eye(26)[T_train]
# 导入测试集和测试集对应的标签标签并将其初始化
X_test, T_test = idx2numpy.convert_from_file('emnist/emnist-letters-test-images-idx3-ubyte'), idx2numpy.convert_from_file('emnist/emnist-letters-test-labels-idx1-ubyte')
X_test, T_test = X_test.copy(), T_test.copy()
X_test = X_test.reshape((X_test.shape[0], -1))
T_test = T_test - 1
T_test = np.eye(26)[T_test]
# 定义神经网络模型
class NeuralNetwork:
def __init__(self, num_inputs, num_hidden, num_outputs):
# 初始化权重
self.weights1 = np.random.randn(num_inputs, num_hidden)
self.weights2 = np.random.randn(num_hidden, num_outputs)
def sigmoid(self, x):
# sigmoid激活函数
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
# sigmoid函数的导数
return x * (1 - x)
def forward(self, X):
# 前向传播
self.hidden = self.sigmoid(np.dot(X, self.weights1))
self.output = self.sigmoid(np.dot(self.hidden, self.weights2))
return self.output
def backward(self, X, y, output):
# 反向传播
self.output_error = y - output
self.output_delta = self.output_error * self.sigmoid_derivative(output)
self.hidden_error = self.output_delta.dot(self.weights2.T)
self.hidden_delta = self.hidden_error * self.sigmoid_derivative(self.hidden)
self.weights1 += X.T.dot(self.hidden_delta)
self.weights2 += self.hidden.T.dot(self.output_delta)
def train(self, X, y):
# 训练模型
output = self.forward(X)
self.backward(X, y, output)
def predict(self, X):
# 预测
return np.argmax(self.forward(X), axis=1)
# 初始化神经网络
nn = NeuralNetwork(784, 50, 26)
# 训练神经网络
for i in range(1000):
nn.train(X_train, T_train)
# 在测试集上进行预测
predictions = nn.predict(X_test)
# 计算准确率
accuracy = np.mean(predictions == np.argmax(T_test, axis=1))
print("Accuracy:", accuracy)
```
代码中定义了一个包含一个隐藏层的神经网络模型,使用sigmoid激活函数和反向传播算法进行训练。在训练完成后,使用测试集进行预测,并计算准确率。注意,这里使用了`np.argmax`函数来将独热编码的标签转换为整数。
阅读全文