cv2.createlinesegmentdetector的_refine参数的作用
时间: 2023-06-13 14:07:24 浏览: 123
`cv2.createLineSegmentDetector()` 是一个用于检测图像中直线段的函数。`_refine` 参数是用于控制线段检测算法的精度和速度的一个参数。
具体地说,`_refine` 参数控制了线段检测算法中的两个子步骤:
1. 分割:将图像中的线段分割成不同的线段片段。这个过程需要消耗大量的计算资源,因此 `_refine` 参数可以控制分割的精度。当 `_refine` 参数值较小时,分割的精度较低,但速度较快;当 `_refine` 参数值较大时,分割的精度较高,但速度较慢。
2. 优化:将线段片段进行优化,以得到更准确的线段。这个过程也需要很多计算资源,因此 `_refine` 参数也可以控制优化的精度。当 `_refine` 参数值较小时,优化的精度较低,但速度较快;当 `_refine` 参数值较大时,优化的精度较高,但速度较慢。
总的来说,`_refine` 参数可以根据应用场景的需求进行调整,以达到最佳的检测效果和速度。
相关问题
cv2.createLineSegmentDetector的具体参数
cv2.createLineSegmentDetector()是OpenCV中用于检测图像中线段的函数,它的具体参数如下:
```
cv2.createLineSegmentDetector(_refine=cv2.LSD_REFINE_STD, _scale=0.8, _sigma_scale=0.6, _quant=2.0, _ang_th=22.5, _log_eps=0, _density_th=0.7, _n_bins=1024)
```
其中各个参数的含义如下:
- `_refine`: 线段检测方法,默认为`cv2.LSD_REFINE_STD`,表示使用标准的检测方法;另外还有`cv2.LSD_REFINE_NONE`和`cv2.LSD_REFINE_ADV`两种方法可供选择。
- `_scale`: 图像缩放比例,默认为0.8。
- `_sigma_scale`: 高斯滤波器的sigma值,默认为0.6。
- `_quant`: 边缘方向量化时的量化因子,默认为2.0。
- `_ang_th`: 线段方向相似度阈值,默认为22.5度。
- `_log_eps`: 用于控制边缘强度的对数函数的截断值,默认为0。
- `_density_th`: 点密度阈值,用于控制线段检测的密度,默认为0.7。
- `_n_bins`: 边缘方向量化时的方向数量,默认为1024。
以上是`cv2.createLineSegmentDetector()`函数的具体参数。
详细解释一下这段代码,每一句都要进行注解:tgt = f'/kaggle/working/{dataset}-{scene}' # Generate a simple reconstruction with SIFT (https://en.wikipedia.org/wiki/Scale-invariant_feature_transform). if not os.path.isdir(tgt): os.makedirs(f'{tgt}/bundle') os.system(f'cp -r {src}/images {tgt}/images') database_path = f'{tgt}/database.db' sift_opt = pycolmap.SiftExtractionOptions() sift_opt.max_image_size = 1500 # Extract features at low resolution could significantly reduce the overall accuracy sift_opt.max_num_features = 8192 # Generally more features is better, even if behond a certain number it doesn't help incresing accuracy sift_opt.upright = True # rotation invariance device = 'cpu' t = time() pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True) print(len(os.listdir(f'{tgt}/images'))) print('TIMINGS --- Feature extraction', time() - t) t = time() matching_opt = pycolmap.SiftMatchingOptions() matching_opt.max_ratio = 0.85 # Ratio threshold significantly influence the performance of the feature extraction method. It varies depending on the local feature but also on the image type # matching_opt.max_distance = 0.7 matching_opt.cross_check = True matching_opt.max_error = 1.0 # The ransac error threshold could help to exclude less accurate tie points pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True) print('TIMINGS --- Feature matching', time() - t) t = time() mapper_options = pycolmap.IncrementalMapperOptions() mapper_options.extract_colors = False mapper_options.min_model_size = 3 # Sometimes you want to impose the first image pair for initialize the incremental reconstruction mapper_options.init_image_id1 = -1 mapper_options.init_image_id2 = -1 # Choose which interior will be refined during BA mapper_options.ba_refine_focal_length = True mapper_options.ba_refine_principal_point = True mapper_options.ba_refine_extra_params = True maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options) print('TIMINGS --- Mapping', time() - t)
这段代码主要是使用 PyCOLMAP 库实现对图像的特征提取、特征匹配和增量式三维重建。具体解释如下:
```tgt = f'/kaggle/working/{dataset}-{scene}'```
定义了一个字符串变量 tgt,表示输出路径。
```if not os.path.isdir(tgt):```
如果输出路径不存在,则创建该路径。
```os.makedirs(f'{tgt}/bundle')```
在输出路径下创建子目录 bundle。
```os.system(f'cp -r {src}/images {tgt}/images')```
将源目录 src 中的 images 目录复制到输出路径下的 images 目录中。
```database_path = f'{tgt}/database.db'```
定义一个字符串变量 database_path,表示 PyCOLMAP 库中使用的数据库文件路径。
```sift_opt = pycolmap.SiftExtractionOptions()```
创建一个 SIFT 特征提取选项对象。
```sift_opt.max_image_size = 1500```
设置 SIFT 特征提取选项对象的最大图像尺寸为 1500×1500 像素。
```sift_opt.max_num_features = 8192```
设置 SIFT 特征提取选项对象的最大特征点数为 8192 个。
```sift_opt.upright = True```
设置 SIFT 特征提取选项对象的旋转不变性为 True,即不考虑图像旋转。
```device = 'cpu'```
定义一个字符串变量 device,表示计算设备类型。
```pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True)```
调用 PyCOLMAP 库中的 extract_features 函数,对输出路径下的图像进行 SIFT 特征提取,并将特征保存到数据库文件中。
```print(len(os.listdir(f'{tgt}/images')))```
输出输出路径下的图像数量。
```print('TIMINGS --- Feature extraction', time() - t)```
输出特征提取所花费的时间。
```matching_opt = pycolmap.SiftMatchingOptions()```
创建一个 SIFT 特征匹配选项对象。
```matching_opt.max_ratio = 0.85```
设置 SIFT 特征匹配选项对象的最大匹配比率为 0.85。
```matching_opt.max_distance = 0.7```
设置 SIFT 特征匹配选项对象的最大匹配距离为 0.7。
```matching_opt.cross_check = True```
设置 SIFT 特征匹配选项对象的交叉匹配为 True,即同时匹配两幅图像。
```matching_opt.max_error = 1.0```
设置 SIFT 特征匹配选项对象的最大误差为 1.0。
```pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True)```
调用 PyCOLMAP 库中的 match_exhaustive 函数,对数据库文件中的特征进行 SIFT 特征匹配,并将匹配结果保存到数据库文件中。
```print('TIMINGS --- Feature matching', time() - t)```
输出特征匹配所花费的时间。
```mapper_options = pycolmap.IncrementalMapperOptions()```
创建一个增量式三维重建选项对象。
```mapper_options.extract_colors = False```
设置增量式三维重建选项对象的颜色提取为 False,即不提取图像颜色信息。
```mapper_options.min_model_size = 3```
设置增量式三维重建选项对象的最小模型大小为 3。
```mapper_options.init_image_id1 = -1```
设置增量式三维重建选项对象的第一张图像的 ID 为 -1,表示不指定。
```mapper_options.init_image_id2 = -1```
设置增量式三维重建选项对象的第二张图像的 ID 为 -1,表示不指定。
```mapper_options.ba_refine_focal_length = True```
设置增量式三维重建选项对象的相机内参的优化为 True。
```mapper_options.ba_refine_principal_point = True```
设置增量式三维重建选项对象的相机主点的优化为 True。
```mapper_options.ba_refine_extra_params = True```
设置增量式三维重建选项对象的额外参数的优化为 True。
```maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options)```
调用 PyCOLMAP 库中的 incremental_mapping 函数,对数据库文件中的匹配结果进行增量式三维重建,并将重建结果保存到输出路径下的 bundle 目录中。
```print('TIMINGS --- Mapping', time() - t)```
输出增量式三维重建所花费的时间。
阅读全文