pytorch中z.backward()
时间: 2024-05-29 10:15:41 浏览: 46
浅谈pytorch中torch.max和F.softmax函数的维度解释
在 PyTorch 中,`z.backward()` 用于计算张量 `z` 相对于所有需要梯度的张量的梯度,并将结果存储在相应的张量的 `grad` 属性中。该操作是自动微分的核心操作之一,用于计算损失函数相对于模型参数的梯度,以便使用优化器更新模型参数。在计算梯度之前,需要确保 `z` 是标量(只包含一个元素)。
在反向传播过程中,PyTorch 会根据计算图自动构建反向计算图,并使用链式法则计算每个张量的梯度。这也是 PyTorch 的一个优势,因为它可以自动处理复杂的计算图和梯度计算,使得深度学习模型的实现更加高效和简单。
阅读全文