基于贪心算法和Floyd-Warshall算法的钢板最优切割路径问题的python代码,输出切割路径图像
时间: 2024-06-17 10:02:37 浏览: 172
python基于贪心、迭代实现的生物遗传物质切割算法源码.zip
基于贪心算法的钢板最优切割路径问题的Python代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
def greedy_cutting(width, height, cuts):
# 初始化钢板
board = np.zeros((height, width))
# 对每一次切割进行贪心选择
for cut in cuts:
best_score = float('inf')
best_position = None
# 在每个位置尝试切割
for i in range(height - cut + 1):
for j in range(width - cut + 1):
# 计算当前位置的得分
score = np.sum(board[i:i+cut, j:j+cut])
# 更新最优得分和位置
if score < best_score:
best_score = score
best_position = (i, j)
# 在最优位置进行切割
board[best_position:best_position+cut, best_position:best_position+cut[0]] = 1
return board
# 示例输入
width = 10
height = 6
cuts = [(2, 3), (4, 2), (3, 4)]
# 调用贪心算法进行切割
board = greedy_cutting(width, height, cuts)
# 绘制切割路径图像
plt.imshow(board, cmap='gray')
plt.show()
```
基于Floyd-Warshall算法的钢板最优切割路径问题的Python代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
def floyd_warshall_cutting(width, height, cuts):
# 初始化钢板
board = np.zeros((height, width))
# 构建邻接矩阵
graph = np.full((len(cuts)+2, len(cuts)+2), float('inf'))
for i in range(len(cuts)):
graph[i][i] = 0
graph[i][i+1] = 0
graph[i+1][i] = 0
graph[i+1][i+1] = 0
# 计算每个切割之间的最短路径
for i in range(len(cuts)):
for j in range(i+1, len(cuts)+1):
graph[i][j] = np.sum(board[:cuts[j-1], :cuts[j-1]])
graph[j][i] = np.sum(board[:cuts[j-1], :cuts[j-1]])
# 使用Floyd-Warshall算法计算最短路径
for k in range(len(cuts)+2):
for i in range(len(cuts)+2):
for j in range(len(cuts)+2):
graph[i][j] = min(graph[i][j], graph[i][k] + graph[k][j])
# 根据最短路径进行切割
for i in range(len(cuts)):
if graph[i][len(cuts)+1] < float('inf'):
board[:cuts[i][1], :cuts[i]] = 1
return board
# 示例输入
width = 10
height = 6
cuts = [(2, 3), (4, 2), (3, 4)]
# 调用Floyd-Warshall算法进行切割
board = floyd_warshall_cutting(width, height, cuts)
# 绘制切割路径图像
plt.imshow(board, cmap='gray')
plt.show()
```
请注意,以上代码仅为示例,实际应用中可能需要根据具体需求进行适当的修改。
阅读全文