rand_i = np.random.randint(m)

时间: 2023-11-20 15:49:11 浏览: 33
rand_i = np.random.randint(m)是使用numpy中的random模块生成一个随机整数,范围是[0, m)。这个函数与random.randint()类似,但是参数的含义有所不同。相关问题如下: 相关问题: 1. np.random.random()函数用来生成什么样的随机数? 2. random.randint()和np.random.randint()的区别是什么? 3. 如何生成一个指定范围的随机浮点数?
相关问题

image=np.array(grayImage,dtype=float) percent=0.001 num=int(percent*image.shape[0]*image.shape[1]) for i in range(num): temp1=np.random.randint(image.shape[0]) temp2=np.random.randint(image.shape[1]) scale=150 noise=np.random.poisson(scale,1) image[temp1][temp2]+=noise out=image if out.min()<0: low_clip=-1. else: low_clip=0. out=np.clip(out,low_clip,255) expon_image=np.uint8(out) print(expon_image.shape) cv2.imshow("expon_image",expon_image) k=cv2.waitKey(0)优化这段代码的for循环

可以使用numpy的随机函数生成随机的坐标,然后使用numpy的切片和花式索引方式对图像进行操作,可以避免使用循环。 以下是优化后的代码: ```python import numpy as np import cv2 grayImage = cv2.imread('test.jpg', 0) # 转换为浮点型 image = grayImage.astype(float) percent = 0.001 num = int(percent * image.shape[0] * image.shape[1]) # 生成随机坐标 rand_x = np.random.randint(0, image.shape[0], num) rand_y = np.random.randint(0, image.shape[1], num) scale = 150 noise = np.random.poisson(scale, num) # 对图像进行操作 image[rand_x, rand_y] += noise # 调整像素值范围 out = np.clip(image, 0, 255) # 转换为8位整型 expon_image = out.astype(np.uint8) print(expon_image.shape) cv2.imshow("expon_image", expon_image) k = cv2.waitKey(0) ``` 使用numpy的切片和花式索引方式,可以避免使用循环,提高代码的效率。同时,也需要注意对图像进行操作时,需要保证图像的类型一致,避免出现类型错误的问题。

def crossover(population): for i in range(POP_SIZE - 1): if np.random.rand() < CROSS_RATE: # 以一定的交叉率进行交叉繁殖 j = np.random.randint(0, POP_SIZE, size=1) cross_point = np.random.randint(0, 2, size=2) population[i, cross_point[0]:] = population[j, cross_point[1]:] population[j, cross_point[1]:] = population[i, cross_point[0]:] return population 逐行解释这段代码,包括其中的参数

这段代码是一个交叉繁殖(crossover)函数,用于实现遗传算法中的交叉操作。下面逐行解释其中的代码和参数: ```python def crossover(population): ``` 这是一个名为 crossover 的函数,它接收一个参数 population,代表当前的种群。 ```python for i in range(POP_SIZE - 1): ``` 使用循环遍历种群中的个体。循环索引 i 在范围从 0 到 POP_SIZE - 1(不包括 POP_SIZE - 1)之间。 ```python if np.random.rand() < CROSS_RATE: ``` 根据交叉率 CROSS_RATE,通过随机数生成器 np.random.rand() 来决定是否进行交叉操作。如果生成的随机数小于交叉率,则进行交叉。 ```python j = np.random.randint(0, POP_SIZE, size=1) ``` 随机选择一个个体作为交叉的伙伴。使用 np.random.randint() 函数从 0 到 POP_SIZE(不包括 POP_SIZE)之间随机选择一个整数作为索引值 j。 ```python cross_point = np.random.randint(0, 2, size=2) ``` 随机选择两个交叉点。使用 np.random.randint() 函数从 0 到 2(不包括 2)之间随机选择两个整数作为交叉点的位置。这里假设个体的特征数为 2。 ```python population[i, cross_point[0]:] = population[j, cross_point[1]:] population[j, cross_point[1]:] = population[i, cross_point[0]:] ``` 进行交叉操作。将个体 i 在交叉点 0 后的部分与个体 j 在交叉点 1 后的部分进行交换,并将结果赋值给对应的个体。同时,将个体 j 在交叉点 1 后的部分与个体 i 在交叉点 0 后的部分进行交换。 ```python return population ``` 返回经过交叉操作后的种群。 总结:该函数通过随机选择个体和交叉点,根据交叉率进行交叉操作,从而实现种群的繁殖和变异。

相关推荐

请在不影响结果的条件下改变代码的样子:import numpy as np import matplotlib.pyplot as plt x1len = 21 x2len = 18 LEN = x1len + x2len POPULATION_SIZE = 100 GENERATIONS = 251 CROSSOVER_RATE = 0.7 MUTATION_RATE = 0.3 pop = np.random.randint(0,2,size=(POPULATION_SIZE,LEN)) def BinToX(pop): x1 = pop[:,0:x1len] x2 = pop[:,x1len:] x1 = x1.dot(2**np.arange(x1len)[::-1]) x2 = x2.dot(2**np.arange(x2len)[::-1]) x1 = -2.9 + x1*(12 + 2.9)/(np.power(2,x1len)-1) x2 = 4.2 + x2*(5.7 - 4.2)/(np.power(2,x2len)-1) return x1,x2 def func(pop): x1,x2 = BinToX(pop) return 21.5 + x1*np.sin(4*np.pi*x1) + x2*np.sin(20*np.pi*x2) def fn(pop): return func(pop); def selection(pop, fitness): idx = np.random.choice(np.arange(pop.shape[0]), size=POPULATION_SIZE, replace=True, p=fitness/fitness.sum()) return pop[idx] def crossover(IdxP1,pop): if np.random.rand() < CROSSOVER_RATE: C = np.zeros((1,LEN)) IdxP2 = np.random.randint(0, POPULATION_SIZE) pt = np.random.randint(0, LEN) C[0,:pt] = pop[IdxP1,:pt] C[0,pt:] = pop[IdxP2, pt:] np.append(pop, C, axis=0) return def mutation(idx,pop): if np.random.rand() < MUTATION_RATE: mut_index = np.random.randint(0, LEN) pop[idx,mut_index] = 1- pop[idx,mut_index] return best_chrom = np.zeros(LEN) best_score = 0 fig = plt.figure() for generation in range(GENERATIONS): fitness = fn(pop) pop = selection(pop, fitness) if generation%50 == 0: ax = fig.add_subplot(2,3,generation//50 +1, projection='3d', title = "generation:"+str(generation)+" best="+str(np.max(fitness))) x1,x2 = BinToX(pop) z = func(pop) ax.scatter(x1,x2,z) for idx in range(POPULATION_SIZE): crossover(idx,pop) mutation(idx,pop) idx = np.argmax(fitness) if best_score < fitness[idx]: best_score = fitness[idx] best_chrom = pop[idx, :] plt.show() print('最优解:', best_chrom, '| best score: %.2f' % best_score)

import dgl import numpy as np import torch import torch.nn as nn import dgl.function as fn # 生成10个节点和15条边的图 g = dgl.rand_graph(10, 15) # 为每个节点随机生成一个特征向量 feat = np.random.rand(10, 5) # 为每条边随机生成一个特征向量 e_feat = np.random.rand(15, 3) # 将特征向量添加到图中 g.ndata['feat'] = torch.from_numpy(feat) g.edata['e_feat'] =torch.from_numpy(e_feat) # 随机给每个节点分配一个标签 labels = np.random.randint(0, 3, size=(10,)) g.ndata['label'] = torch.from_numpy(labels) class GraphSAGE(nn.Module): def __init__(self, in_feats, h_feats, num_classes): super(GraphSAGE, self).__init__() self.conv1 = dgl.nn.SAGEConv(in_feats, h_feats, 'mean') self.conv2 = dgl.nn.SAGEConv(h_feats, num_classes, 'mean') def forward(self, g, in_feat): h = self.conv1(g, in_feat) h = torch.relu(h) h = self.conv2(g, h) g.ndata['h'] = h hg = dgl.mean_nodes(g, 'h') return hg # 定义超参数 in_feats = 5 h_feats = 10 num_classes = 3 lr = 0.01 num_epochs = 20 # 创建模型和优化器 model = GraphSAGE(in_feats, h_feats, num_classes) optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 训练模型 for epoch in range(num_epochs): logits = model(g, g.ndata['feat']) labels = g.ndata['label'] loss = nn.CrossEntropyLoss()(logits, labels) optimizer.zero_grad() loss.backward() optimizer.step() print('Epoch %d | Loss: %.4f' % (epoch, loss.item())) # 预测 model.eval() with torch.no_grad(): logits = model(g, g.ndata['feat']) pred = logits.argmax(1) print('Predicted labels:', pred) 报错:RuntimeError: expected scalar type Double but found Float

最新推荐

recommend-type

np.random一系列(np.random.normal()、np.random.randint、np.random.randn、np.random.rand)

在使用numpy的时候,我们经常会使用到np.random一系列的有关函数,来创建ndarray 数组。random代表随机的意思,指ndarray中的数是随机数。后面的函数表示随机生成的ndarray需要符合什么样的条件。因为其太多,所以...
recommend-type

yolov5-face-landmarks-opencv

yolov5检测人脸和关键点,只依赖opencv库就可以运行,程序包含C++和Python两个版本的。 本套程序根据https://github.com/deepcam-cn/yolov5-face 里提供的训练模型.pt文件。转换成onnx文件, 然后使用opencv读取onnx文件做前向推理,onnx文件从百度云盘下载,下载 链接:https://pan.baidu.com/s/14qvEOB90CcVJwVC5jNcu3A 提取码:duwc 下载完成后,onnx文件存放目录里,C++版本的主程序是main_yolo.cpp,Python版本的主程序是main.py 。此外,还有一个main_export_onnx.py文件,它是读取pytorch训练模型.pt文件生成onnx文件的。 如果你想重新生成onnx文件,不能直接在该目录下运行的,你需要把文件拷贝到https://github.com/deepcam-cn/yolov5-face 的主目录里运行,就可以生成onnx文件。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望