X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.3, random_state=42)
时间: 2023-08-28 22:18:17 浏览: 183
这段代码使用了Python中的train_test_split()函数进行训练集和测试集的划分。其中,features代表特征数据,labels代表标签数据。test_size参数指定了测试集占整个数据集的比例,这里为0.3,即测试集占30%。random_state参数用于设定随机数种子,保证多次运行时划分结果相同。最终,划分结果分别保存在X_train, X_test, y_train, y_test这四个变量中。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [python机器学习 train_test_split()函数用法解析及示例 划分训练集和测试集 以鸢尾数据为例 入门级讲解](https://blog.csdn.net/weixin_48964486/article/details/122866347)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文