def call(self, x): batch_size, _, _ = x.shape x = self.embeddings(x) # similar to embedding, expand feature dimensions to embedding_size m x = tf.transpose(x, perm=[0, 2, 1]) h_matrix = tf.zeros([batch_size, self.embedding_size, self.obs_len]) for i in tf.range(self.embedding_size): m = tf.reshape(x[:, i, :], shape=[batch_size, 1, -1]) h_m = self.lstm(m)[:, -1, :] for j in tf.range(batch_size): # update h_matrix h_matrix = tf.tensor_scatter_nd_update(h_matrix, [[j, i]], tf.reshape(h_m[j], shape=[1, -1])
时间: 2024-04-12 16:33:39 浏览: 209
这段代码是一个神经网络模型的前向传播过程的一部分。在这个模型中,输入x经过嵌入层(embeddings)进行特征转换,并且通过转置操作将特征维度与时间步维度进行交换。然后,一个全零的矩阵h_matrix被初始化,用于存储每个时间步中的隐藏状态。
接下来,通过循环遍历嵌入维度的每个元素,将x中对应位置的特征提取出来,形成一个新的矩阵m。然后,将m输入到LSTM层中进行计算,并且取LSTM输出序列的最后一个时间步的隐藏状态作为h_m。
在内层循环中,遍历批次中的每个样本,并且通过tf.tensor_scatter_nd_update函数将h_m的值更新到h_matrix中对应位置的元素上。
整个过程的目的是利用嵌入层和LSTM层将输入数据转换为隐藏状态序列,并将每个时间步的隐藏状态存储在h_matrix中。最终,h_matrix可以被用于模型的后续处理或输出。
相关问题
class TimeWindowSequence(Sequence): def __init__(self, x, y, batch_size, window_size): self.x = x self.y = y self.batch_size = batch_size self.window_size = window_size self.window_count = int(np.ceil(x.shape[0] / window_size)) def __len__(self): return int(np.ceil(self.x.shape[0] / self.batch_size)) def __getitem__(self, idx): batch_x = np.zeros((self.batch_size, self.window_size, self.x.shape[1])) batch_y = np.zeros((self.batch_size, self.y.shape[1])) for i in range(self.batch_size): j = idx * self.batch_size + i if j >= self.window_count: break window_x = self.x[j*self.window_size:(j+1)*self.window_size, :] window_y = self.y[j*self.window_size:(j+1)*self.window_size, :] batch_x[i, :window_x.shape[0], :] = window_x batch_y[i, :] = window_y[-1, :] return batch_x, batch_y出现
这段代码中似乎缺少了一个缩进,导致 `return` 语句在 `for` 循环内部。可以尝试将 `return` 语句缩进到 `for` 循环外部,如下所示:
```
class TimeWindowSequence(Sequence):
def __init__(self, x, y, batch_size, window_size):
self.x = x
self.y = y
self.batch_size = batch_size
self.window_size = window_size
self.window_count = int(np.ceil(x.shape[0] / window_size))
def __len__(self):
return int(np.ceil(self.x.shape[0] / self.batch_size))
def __getitem__(self, idx):
batch_x = np.zeros((self.batch_size, self.window_size, self.x.shape[1]))
batch_y = np.zeros((self.batch_size, self.y.shape[1]))
for i in range(self.batch_size):
j = idx * self.batch_size + i
if j >= self.window_count:
break
window_x = self.x[j*self.window_size:(j+1)*self.window_size, :]
window_y = self.y[j*self.window_size:(j+1)*self.window_size, :]
batch_x[i, :window_x.shape[0], :] = window_x
batch_y[i, :] = window_y[-1, :]
return batch_x, batch_y
```
这样应该就可以解决这个问题了。
class Net(nn.Module): def __init__(self,input_size,hidden_size,num_layers,output_size,batch_size,seq_length) -> None: super(Net,self).__init__() self.input_size=input_size self.hidden_size=hidden_size self.num_layers=num_layers self.output_size=output_size self.batch_size=batch_size self.seq_length=seq_length self.num_directions=1 # 单向LSTM self.lstm=nn.LSTM(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers,batch_first=True) # LSTM层 self.fc=nn.Linear(hidden_size,output_size) # 全连接层 def forward(self,x): # e.g. x(10,3,100) 三个句子,十个单词,一百维的向量,nn.LSTM(input_size=100,hidden_size=20,num_layers=4) # out.shape=(10,3,20) h/c.shape=(4,b,20) batch_size, seq_len = x.size()[0], x.size()[1] # x.shape=(604,3,3) h_0 = torch.randn(self.num_directions * self.num_layers, x.size(0), self.hidden_size) c_0 = torch.randn(self.num_directions * self.num_layers, x.size(0), self.hidden_size) # output(batch_size, seq_len, num_directions * hidden_size) output, _ = self.lstm(x, (h_0, c_0)) # output(5, 30, 64) pred = self.fc(output) # (5, 30, 1) pred = pred[:, -1, :] # (5, 1) return pred改成python代码
这段代码是一个简单的使用 PyTorch 实现的 LSTM 模型。下面是将其转化为 Python 代码的版本:
```python
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, seq_length):
super(Net, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.batch_size = batch_size
self.seq_length = seq_length
self.num_directions = 1 # 单向LSTM
# LSTM层
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True)
# 全连接层
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
# x.shape=(10,3,100),三个句子,十个单词,一百维的向量
# out.shape=(10,3,20),h/c.shape=(4,b,20)
batch_size, seq_len = x.size()[0], x.size()[1]
h_0 = torch.randn(self.num_directions * self.num_layers, x.size(0), self.hidden_size)
c_0 = torch.randn(self.num_directions * self.num_layers, x.size(0), self.hidden_size)
output, _ = self.lstm(x, (h_0, c_0)) # output(batch_size, seq_len, num_directions * hidden_size)
pred = self.fc(output) # (5, 30, 1)
pred = pred[:, -1, :] # (5, 1)
return pred
```
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044736.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)