蚁群算法轮盘赌python代码
时间: 2024-02-29 10:49:53 浏览: 165
蚁群算法的python代码
4星 · 用户满意度95%
蚁群算法是一种模拟蚂蚁觅食行为的优化算法,常用于解决组合优化问题。而轮盘赌是蚁群算法中的一种选择策略,用于确定下一步的行动。
以下是一个使用轮盘赌选择策略的蚁群算法的Python代码示例:
```python
import random
# 初始化蚂蚁数量、城市数量和信息素矩阵
ant_num = 10
city_num = 5
pheromone = [[1.0 for _ in range(city_num)] for _ in range(city_num)]
# 初始化城市距离矩阵
distance = [
[0, 2, 3, 4, 5],
[2, 0, 6, 7, 8],
[3, 6, 0, 9, 10],
[4, 7, 9, 0, 11],
[5, 8, 10, 11, 0]
]
# 轮盘赌选择下一个城市
def roulette_selection(probabilities):
total = sum(probabilities)
r = random.uniform(0, total)
accumulate = 0
for i in range(len(probabilities)):
accumulate += probabilities[i]
if accumulate >= r:
return i
# 蚁群算法主循环
for _ in range(100):
# 初始化每只蚂蚁的当前城市和已访问城市列表
ants = [[random.randint(0, city_num-1)] for _ in range(ant_num)]
visited = [[False for _ in range(city_num)] for _ in range(ant_num)]
# 每只蚂蚁按照轮盘赌选择下一个城市
for _ in range(city_num-1):
for ant in ants:
current_city = ant[-1]
unvisited_cities = [i for i in range(city_num) if not visited[ant_num][i]]
probabilities = [pheromone[current_city][city] / distance[current_city][city] for city in unvisited_cities]
next_city = roulette_selection(probabilities)
ant.append(next_city)
visited[ant_num][next_city] = True
# 更新信息素矩阵
delta_pheromone = [[0.0 for _ in range(city_num)] for _ in range(city_num)]
for ant in ants:
for i in range(city_num-1):
current_city = ant[i]
next_city = ant[i+1]
delta_pheromone[current_city][next_city] += 1 / distance[current_city][next_city]
for i in range(city_num):
for j in range(city_num):
pheromone[i][j] = (1 - 0.5) * pheromone[i][j] + delta_pheromone[i][j]
# 输出最优路径
best_ant = max(ants, key=lambda x: sum(distance[x[i]][x[i+1]] for i in range(city_num-1)))
best_path = [str(city) for city in best_ant]
print("Best path:", "->".join(best_path))
```
这段代码实现了一个简单的蚁群算法,其中使用了轮盘赌选择策略来确定下一个城市。代码中的城市数量为5,距离矩阵和信息素矩阵都是手动设置的示例数据。你可以根据实际问题进行相应的修改。
阅读全文