bp神经网络波士顿房价预测
时间: 2023-11-14 07:04:57 浏览: 130
BP神经网络可以用于波士顿房价预测,具体实现步骤如下:
1.准备数据集,使用housing.csv数据集。
2.使用Python代码实现前向和后向传播,具体实现步骤如下:
(1)导入必要的库和模块:
```python
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler
```
(2)加载数据集并进行标准化处理:
```python
boston = load_boston()
X = boston.data
y = boston.target.reshape(-1, 1)
scaler = StandardScaler()
X = scaler.fit_transform(X)
y = scaler.fit_transform(y)
```
(3)定义神经网络的参数:
```python
n_features = X.shape[1]
n_hidden = 10
learning_rate = 0.01
n_epochs = 1000
```
(4)定义输入和输出的占位符:
```python
_placeholder = tf.placeholder(tf.float32, [None, n_features])
y_placeholder = tf.placeholder(tf.float32, [None, 1])
```
(5)定义权重和偏置变量:
```python
weights = {
'hidden': tf.Variable(tf.random_normal([n_features, n_hidden])),
'output': tf.Variable(tf.random_normal([n_hidden, 1]))
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden])),
'output': tf.Variable(tf.random_normal([1]))
}
```
(6)定义前向传播过程:
```python
hidden_layer = tf.add(tf.matmul(X_placeholder, weights['hidden']), biases['hidden'])
hidden_layer = tf.nn.relu(hidden_layer)
output_layer = tf.add(tf.matmul(hidden_layer, weights['output']), biases['output'])
```
(7)定义损失函数和优化器:
```python
loss = tf.reduce_mean(tf.square(output_layer - y_placeholder))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
```
(8)定义TensorFlow会话并进行训练:
```python
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(n_epochs):
_, loss_value = sess.run([optimizer, loss], feed_dict={X_placeholder: X, y_placeholder: y})
if epoch % 100 == 0:
print("Epoch:", epoch, " Loss:", loss_value)
```
3.损失函数使用方差,可以使用Tensorboard查看神经网络结构图和loss值的变化,具体实现步骤如下:
(1)定义Tensorboard的输出路径:
```python
logdir = 'logs/'
```
(2)定义Tensorboard的输出节点:
```python
tf.summary.scalar('loss', loss)
merged_summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(logdir, sess.graph)
```
(3)在训练过程中记录Tensorboard的输出:
```python
_, loss_value, summary = sess.run([optimizer, loss, merged_summary_op], feed_dict={X_placeholder: X, y_placeholder: y})
summary_writer.add_summary(summary, epoch)
```
(4)在命令行中启动Tensorboard:
```
tensorboard --logdir=logs/
```
(5)在浏览器中打开Tensorboard的网址:
```
http://localhost:6006/
```
阅读全文