opencv图片中车牌字符识别出来完整代码
时间: 2024-11-03 15:18:47 浏览: 11
Python+OpenCV实现车牌字符分割和识别
5星 · 资源好评率100%
在OpenCV库中进行车牌字符识别通常涉及几个步骤,包括图像预处理、特征检测、分割字符和识别字符。以下是一个简化的Python示例,展示了使用`cv2`库和第三方库如`pytesseract`(Tesseract OCR引擎用于文字识别)和`OCRopus`进行基本流程:
```python
import cv2
import pytesseract
from PIL import Image
# 加载图像
image = cv2.imread('your_license_plate_image.jpg')
# 转换为灰度图像并二值化
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# 进行膨胀操作来消除噪声
kernel = np.ones((5,5),np.uint8)
dilated = cv2.dilate(binary,kernel,iterations = 1)
# 使用霍夫变换查找直线
lines = cv2.HoughLinesP(dilated, 1, np.pi/180, 100, minLineLength=50, maxLineGap=5)
# 根据检测到的线条分割出字符区域
regions = []
for line in lines:
x1, y1, x2, y2 = line[0]
regions.append(binary[y1:y2, x1:x2])
# 对每个字符区域进行OCR识别
text_regions = [pytesseract.image_to_string(Image.fromarray(region)) for region in regions]
# 结果合并
merged_text = ''.join(text_regions)
print("Detected text:", merged_text)
阅读全文