opencv车牌识别的完整代码
时间: 2024-09-18 11:06:54 浏览: 47
在Python中,使用OpenCV进行车牌识别通常涉及以下几个步骤:预处理、特征提取、匹配模板以及最终定位车牌。下面是一个简化的示例代码,使用了常见的库如`numpy`和`opencv-python`:
```python
import cv2
import numpy as np
def preprocess_image(image):
# 图像灰度化
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 高斯模糊减少噪声
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
return blurred
def find_license_plate_template(image_path):
# 加载预先训练好的车牌模板,这通常是一组车牌字符的模板
templates_folder = 'path/to/templates'
plate_templates = [cv2.imread(os.path.join(templates_folder, template_name), 0) for template_name in os.listdir(templates_folder)]
return plate_templates
def match_template(image, templates):
results = []
for template in templates:
res = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)
_, max_val, _, max_loc = cv2.minMaxLoc(res)
results.append((max_val, max_loc))
return results
def locate_license_plate(image, template_results):
top_left = None
max_val = -1
for val, loc in template_results:
if val > max_val:
max_val = val
top_left = loc
return top_left
def main():
img = cv2.imread('input_image.jpg')
preprocessed_img = preprocess_image(img)
templates = find_license_plate_template()
template_results = match_template(preprocessed_img, templates)
license_plate_top_left = locate_license_plate(preprocessed_img, template_results)
if license_plate_top_left is not None:
roi = img[license_plate_top_left[1]:license_plate_top_left[1]+40, license_plate_top_left[0]:license_plate_top_left[0]+160]
cropped_plate = cv2.resize(roi, (100, 30)) # 可能需要调整尺寸
cv2.imshow('Detected License Plate', cropped_plate)
else:
print("No license plate detected.")
if __name__ == "__main__":
main()
```
请注意,这个例子假设你已经有一个预先训练好的车牌模板集合,实际应用中可能需要使用深度学习模型(例如YOLO或SSD)来进行更精确的车牌定位。
阅读全文